Factor
-3a^{2}\left(4-x\right)^{2}
Evaluate
-3\left(a\left(4-x\right)\right)^{2}
Graph
Share
Copied to clipboard
3\left(-a^{2}x^{2}+8a^{2}x-16a^{2}\right)
Factor out 3.
a^{2}\left(-x^{2}+8x-16\right)
Consider -a^{2}x^{2}+8a^{2}x-16a^{2}. Factor out a^{2}.
p+q=8 pq=-\left(-16\right)=16
Consider -x^{2}+8x-16. Factor the expression by grouping. First, the expression needs to be rewritten as -x^{2}+px+qx-16. To find p and q, set up a system to be solved.
1,16 2,8 4,4
Since pq is positive, p and q have the same sign. Since p+q is positive, p and q are both positive. List all such integer pairs that give product 16.
1+16=17 2+8=10 4+4=8
Calculate the sum for each pair.
p=4 q=4
The solution is the pair that gives sum 8.
\left(-x^{2}+4x\right)+\left(4x-16\right)
Rewrite -x^{2}+8x-16 as \left(-x^{2}+4x\right)+\left(4x-16\right).
-x\left(x-4\right)+4\left(x-4\right)
Factor out -x in the first and 4 in the second group.
\left(x-4\right)\left(-x+4\right)
Factor out common term x-4 by using distributive property.
3a^{2}\left(x-4\right)\left(-x+4\right)
Rewrite the complete factored expression.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}