Solve for a
\left\{\begin{matrix}a=-\frac{41-c+15y+36x-4bx}{3y}\text{, }&y\neq 0\\a\in \mathrm{R}\text{, }&c=41+36x-4bx\text{ and }y=0\end{matrix}\right.
Solve for b
\left\{\begin{matrix}b=\frac{36x+3ay+15y-c+41}{4x}\text{, }&x\neq 0\\b\in \mathrm{R}\text{, }&c=3ay+15y+41\text{ and }x=0\end{matrix}\right.
Graph
Share
Copied to clipboard
-3x-3ay-33-4\left(2-bx\right)=33x+15y-c
Use the distributive property to multiply -3 by x+ay+11.
-3x-3ay-33-8+4bx=33x+15y-c
Use the distributive property to multiply -4 by 2-bx.
-3x-3ay-41+4bx=33x+15y-c
Subtract 8 from -33 to get -41.
-3ay-41+4bx=33x+15y-c+3x
Add 3x to both sides.
-3ay-41+4bx=36x+15y-c
Combine 33x and 3x to get 36x.
-3ay+4bx=36x+15y-c+41
Add 41 to both sides.
-3ay=36x+15y-c+41-4bx
Subtract 4bx from both sides.
\left(-3y\right)a=41-c+15y+36x-4bx
The equation is in standard form.
\frac{\left(-3y\right)a}{-3y}=\frac{41-c+15y+36x-4bx}{-3y}
Divide both sides by -3y.
a=\frac{41-c+15y+36x-4bx}{-3y}
Dividing by -3y undoes the multiplication by -3y.
a=-\frac{41-c+15y+36x-4bx}{3y}
Divide 36x+15y-c+41-4bx by -3y.
-3x-3ay-33-4\left(2-bx\right)=33x+15y-c
Use the distributive property to multiply -3 by x+ay+11.
-3x-3ay-33-8+4bx=33x+15y-c
Use the distributive property to multiply -4 by 2-bx.
-3x-3ay-41+4bx=33x+15y-c
Subtract 8 from -33 to get -41.
-3ay-41+4bx=33x+15y-c+3x
Add 3x to both sides.
-3ay-41+4bx=36x+15y-c
Combine 33x and 3x to get 36x.
-41+4bx=36x+15y-c+3ay
Add 3ay to both sides.
4bx=36x+15y-c+3ay+41
Add 41 to both sides.
4xb=36x+3ay+15y-c+41
The equation is in standard form.
\frac{4xb}{4x}=\frac{36x+3ay+15y-c+41}{4x}
Divide both sides by 4x.
b=\frac{36x+3ay+15y-c+41}{4x}
Dividing by 4x undoes the multiplication by 4x.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}