Solve for w
w = \frac{11}{5} = 2\frac{1}{5} = 2.2
Share
Copied to clipboard
-3w+6=2\left(w-6\right)+7
Use the distributive property to multiply -3 by w-2.
-3w+6=2w-12+7
Use the distributive property to multiply 2 by w-6.
-3w+6=2w-5
Add -12 and 7 to get -5.
-3w+6-2w=-5
Subtract 2w from both sides.
-5w+6=-5
Combine -3w and -2w to get -5w.
-5w=-5-6
Subtract 6 from both sides.
-5w=-11
Subtract 6 from -5 to get -11.
w=\frac{-11}{-5}
Divide both sides by -5.
w=\frac{11}{5}
Fraction \frac{-11}{-5} can be simplified to \frac{11}{5} by removing the negative sign from both the numerator and the denominator.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}