Skip to main content
Evaluate
Tick mark Image
Factor
Tick mark Image

Similar Problems from Web Search

Share

-\frac{15+1}{5}+\frac{2\times 4+1}{4}\times \frac{1}{2}-\frac{1}{3}
Multiply 3 and 5 to get 15.
-\frac{16}{5}+\frac{2\times 4+1}{4}\times \frac{1}{2}-\frac{1}{3}
Add 15 and 1 to get 16.
-\frac{16}{5}+\frac{8+1}{4}\times \frac{1}{2}-\frac{1}{3}
Multiply 2 and 4 to get 8.
-\frac{16}{5}+\frac{9}{4}\times \frac{1}{2}-\frac{1}{3}
Add 8 and 1 to get 9.
-\frac{16}{5}+\frac{9\times 1}{4\times 2}-\frac{1}{3}
Multiply \frac{9}{4} times \frac{1}{2} by multiplying numerator times numerator and denominator times denominator.
-\frac{16}{5}+\frac{9}{8}-\frac{1}{3}
Do the multiplications in the fraction \frac{9\times 1}{4\times 2}.
-\frac{128}{40}+\frac{45}{40}-\frac{1}{3}
Least common multiple of 5 and 8 is 40. Convert -\frac{16}{5} and \frac{9}{8} to fractions with denominator 40.
\frac{-128+45}{40}-\frac{1}{3}
Since -\frac{128}{40} and \frac{45}{40} have the same denominator, add them by adding their numerators.
-\frac{83}{40}-\frac{1}{3}
Add -128 and 45 to get -83.
-\frac{249}{120}-\frac{40}{120}
Least common multiple of 40 and 3 is 120. Convert -\frac{83}{40} and \frac{1}{3} to fractions with denominator 120.
\frac{-249-40}{120}
Since -\frac{249}{120} and \frac{40}{120} have the same denominator, subtract them by subtracting their numerators.
-\frac{289}{120}
Subtract 40 from -249 to get -289.