Evaluate
-\frac{289}{120}\approx -2.408333333
Factor
-\frac{289}{120} = -2\frac{49}{120} = -2.408333333333333
Share
Copied to clipboard
-\frac{15+1}{5}+\frac{2\times 4+1}{4}\times \frac{1}{2}-\frac{1}{3}
Multiply 3 and 5 to get 15.
-\frac{16}{5}+\frac{2\times 4+1}{4}\times \frac{1}{2}-\frac{1}{3}
Add 15 and 1 to get 16.
-\frac{16}{5}+\frac{8+1}{4}\times \frac{1}{2}-\frac{1}{3}
Multiply 2 and 4 to get 8.
-\frac{16}{5}+\frac{9}{4}\times \frac{1}{2}-\frac{1}{3}
Add 8 and 1 to get 9.
-\frac{16}{5}+\frac{9\times 1}{4\times 2}-\frac{1}{3}
Multiply \frac{9}{4} times \frac{1}{2} by multiplying numerator times numerator and denominator times denominator.
-\frac{16}{5}+\frac{9}{8}-\frac{1}{3}
Do the multiplications in the fraction \frac{9\times 1}{4\times 2}.
-\frac{128}{40}+\frac{45}{40}-\frac{1}{3}
Least common multiple of 5 and 8 is 40. Convert -\frac{16}{5} and \frac{9}{8} to fractions with denominator 40.
\frac{-128+45}{40}-\frac{1}{3}
Since -\frac{128}{40} and \frac{45}{40} have the same denominator, add them by adding their numerators.
-\frac{83}{40}-\frac{1}{3}
Add -128 and 45 to get -83.
-\frac{249}{120}-\frac{40}{120}
Least common multiple of 40 and 3 is 120. Convert -\frac{83}{40} and \frac{1}{3} to fractions with denominator 120.
\frac{-249-40}{120}
Since -\frac{249}{120} and \frac{40}{120} have the same denominator, subtract them by subtracting their numerators.
-\frac{289}{120}
Subtract 40 from -249 to get -289.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}