- 3 \frac { 1 } { 2 } | - ( - 3 ) =
Evaluate
-\frac{21}{2}=-10.5
Factor
-\frac{21}{2} = -10\frac{1}{2} = -10.5
Share
Copied to clipboard
\left(-\frac{6+1}{2}\right)|-\left(-3\right)|
Multiply 3 and 2 to get 6.
-\frac{7}{2}|-\left(-3\right)|
Add 6 and 1 to get 7.
-\frac{7}{2}|3|
The opposite of -3 is 3.
-\frac{7}{2}\times 3
The absolute value of a real number a is a when a\geq 0, or -a when a<0. The absolute value of 3 is 3.
\frac{-7\times 3}{2}
Express -\frac{7}{2}\times 3 as a single fraction.
\frac{-21}{2}
Multiply -7 and 3 to get -21.
-\frac{21}{2}
Fraction \frac{-21}{2} can be rewritten as -\frac{21}{2} by extracting the negative sign.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}