Evaluate
-\frac{13}{2}=-6.5
Factor
-\frac{13}{2} = -6\frac{1}{2} = -6.5
Share
Copied to clipboard
\frac{-27}{\left(-2\right)^{2}}-\left(-\frac{1}{2}\right)^{5}\times 2^{3}
Calculate 3 to the power of 3 and get 27.
\frac{-27}{4}-\left(-\frac{1}{2}\right)^{5}\times 2^{3}
Calculate -2 to the power of 2 and get 4.
-\frac{27}{4}-\left(-\frac{1}{2}\right)^{5}\times 2^{3}
Fraction \frac{-27}{4} can be rewritten as -\frac{27}{4} by extracting the negative sign.
-\frac{27}{4}-\left(-\frac{1}{32}\times 2^{3}\right)
Calculate -\frac{1}{2} to the power of 5 and get -\frac{1}{32}.
-\frac{27}{4}-\left(-\frac{1}{32}\times 8\right)
Calculate 2 to the power of 3 and get 8.
-\frac{27}{4}-\frac{-8}{32}
Express -\frac{1}{32}\times 8 as a single fraction.
-\frac{27}{4}-\left(-\frac{1}{4}\right)
Reduce the fraction \frac{-8}{32} to lowest terms by extracting and canceling out 8.
-\frac{27}{4}+\frac{1}{4}
The opposite of -\frac{1}{4} is \frac{1}{4}.
\frac{-27+1}{4}
Since -\frac{27}{4} and \frac{1}{4} have the same denominator, add them by adding their numerators.
\frac{-26}{4}
Add -27 and 1 to get -26.
-\frac{13}{2}
Reduce the fraction \frac{-26}{4} to lowest terms by extracting and canceling out 2.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}