Skip to main content
Solve for x (complex solution)
Tick mark Image
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

-x^{2}-2x+3=-3
Swap sides so that all variable terms are on the left hand side.
-x^{2}-2x+3+3=0
Add 3 to both sides.
-x^{2}-2x+6=0
Add 3 and 3 to get 6.
x=\frac{-\left(-2\right)±\sqrt{\left(-2\right)^{2}-4\left(-1\right)\times 6}}{2\left(-1\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -1 for a, -2 for b, and 6 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-2\right)±\sqrt{4-4\left(-1\right)\times 6}}{2\left(-1\right)}
Square -2.
x=\frac{-\left(-2\right)±\sqrt{4+4\times 6}}{2\left(-1\right)}
Multiply -4 times -1.
x=\frac{-\left(-2\right)±\sqrt{4+24}}{2\left(-1\right)}
Multiply 4 times 6.
x=\frac{-\left(-2\right)±\sqrt{28}}{2\left(-1\right)}
Add 4 to 24.
x=\frac{-\left(-2\right)±2\sqrt{7}}{2\left(-1\right)}
Take the square root of 28.
x=\frac{2±2\sqrt{7}}{2\left(-1\right)}
The opposite of -2 is 2.
x=\frac{2±2\sqrt{7}}{-2}
Multiply 2 times -1.
x=\frac{2\sqrt{7}+2}{-2}
Now solve the equation x=\frac{2±2\sqrt{7}}{-2} when ± is plus. Add 2 to 2\sqrt{7}.
x=-\left(\sqrt{7}+1\right)
Divide 2+2\sqrt{7} by -2.
x=\frac{2-2\sqrt{7}}{-2}
Now solve the equation x=\frac{2±2\sqrt{7}}{-2} when ± is minus. Subtract 2\sqrt{7} from 2.
x=\sqrt{7}-1
Divide 2-2\sqrt{7} by -2.
x=-\left(\sqrt{7}+1\right) x=\sqrt{7}-1
The equation is now solved.
-x^{2}-2x+3=-3
Swap sides so that all variable terms are on the left hand side.
-x^{2}-2x=-3-3
Subtract 3 from both sides.
-x^{2}-2x=-6
Subtract 3 from -3 to get -6.
\frac{-x^{2}-2x}{-1}=-\frac{6}{-1}
Divide both sides by -1.
x^{2}+\left(-\frac{2}{-1}\right)x=-\frac{6}{-1}
Dividing by -1 undoes the multiplication by -1.
x^{2}+2x=-\frac{6}{-1}
Divide -2 by -1.
x^{2}+2x=6
Divide -6 by -1.
x^{2}+2x+1^{2}=6+1^{2}
Divide 2, the coefficient of the x term, by 2 to get 1. Then add the square of 1 to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}+2x+1=6+1
Square 1.
x^{2}+2x+1=7
Add 6 to 1.
\left(x+1\right)^{2}=7
Factor x^{2}+2x+1. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+1\right)^{2}}=\sqrt{7}
Take the square root of both sides of the equation.
x+1=\sqrt{7} x+1=-\sqrt{7}
Simplify.
x=\sqrt{7}-1 x=-\sqrt{7}-1
Subtract 1 from both sides of the equation.
-x^{2}-2x+3=-3
Swap sides so that all variable terms are on the left hand side.
-x^{2}-2x+3+3=0
Add 3 to both sides.
-x^{2}-2x+6=0
Add 3 and 3 to get 6.
x=\frac{-\left(-2\right)±\sqrt{\left(-2\right)^{2}-4\left(-1\right)\times 6}}{2\left(-1\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -1 for a, -2 for b, and 6 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-2\right)±\sqrt{4-4\left(-1\right)\times 6}}{2\left(-1\right)}
Square -2.
x=\frac{-\left(-2\right)±\sqrt{4+4\times 6}}{2\left(-1\right)}
Multiply -4 times -1.
x=\frac{-\left(-2\right)±\sqrt{4+24}}{2\left(-1\right)}
Multiply 4 times 6.
x=\frac{-\left(-2\right)±\sqrt{28}}{2\left(-1\right)}
Add 4 to 24.
x=\frac{-\left(-2\right)±2\sqrt{7}}{2\left(-1\right)}
Take the square root of 28.
x=\frac{2±2\sqrt{7}}{2\left(-1\right)}
The opposite of -2 is 2.
x=\frac{2±2\sqrt{7}}{-2}
Multiply 2 times -1.
x=\frac{2\sqrt{7}+2}{-2}
Now solve the equation x=\frac{2±2\sqrt{7}}{-2} when ± is plus. Add 2 to 2\sqrt{7}.
x=-\left(\sqrt{7}+1\right)
Divide 2+2\sqrt{7} by -2.
x=\frac{2-2\sqrt{7}}{-2}
Now solve the equation x=\frac{2±2\sqrt{7}}{-2} when ± is minus. Subtract 2\sqrt{7} from 2.
x=\sqrt{7}-1
Divide 2-2\sqrt{7} by -2.
x=-\left(\sqrt{7}+1\right) x=\sqrt{7}-1
The equation is now solved.
-x^{2}-2x+3=-3
Swap sides so that all variable terms are on the left hand side.
-x^{2}-2x=-3-3
Subtract 3 from both sides.
-x^{2}-2x=-6
Subtract 3 from -3 to get -6.
\frac{-x^{2}-2x}{-1}=-\frac{6}{-1}
Divide both sides by -1.
x^{2}+\left(-\frac{2}{-1}\right)x=-\frac{6}{-1}
Dividing by -1 undoes the multiplication by -1.
x^{2}+2x=-\frac{6}{-1}
Divide -2 by -1.
x^{2}+2x=6
Divide -6 by -1.
x^{2}+2x+1^{2}=6+1^{2}
Divide 2, the coefficient of the x term, by 2 to get 1. Then add the square of 1 to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}+2x+1=6+1
Square 1.
x^{2}+2x+1=7
Add 6 to 1.
\left(x+1\right)^{2}=7
Factor x^{2}+2x+1. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+1\right)^{2}}=\sqrt{7}
Take the square root of both sides of the equation.
x+1=\sqrt{7} x+1=-\sqrt{7}
Simplify.
x=\sqrt{7}-1 x=-\sqrt{7}-1
Subtract 1 from both sides of the equation.