Solve for m
m = \frac{\sqrt{21} + 1}{2} \approx 2.791287847
m=\frac{1-\sqrt{21}}{2}\approx -1.791287847
Share
Copied to clipboard
-m^{2}+m+2=-3
Swap sides so that all variable terms are on the left hand side.
-m^{2}+m+2+3=0
Add 3 to both sides.
-m^{2}+m+5=0
Add 2 and 3 to get 5.
m=\frac{-1±\sqrt{1^{2}-4\left(-1\right)\times 5}}{2\left(-1\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -1 for a, 1 for b, and 5 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
m=\frac{-1±\sqrt{1-4\left(-1\right)\times 5}}{2\left(-1\right)}
Square 1.
m=\frac{-1±\sqrt{1+4\times 5}}{2\left(-1\right)}
Multiply -4 times -1.
m=\frac{-1±\sqrt{1+20}}{2\left(-1\right)}
Multiply 4 times 5.
m=\frac{-1±\sqrt{21}}{2\left(-1\right)}
Add 1 to 20.
m=\frac{-1±\sqrt{21}}{-2}
Multiply 2 times -1.
m=\frac{\sqrt{21}-1}{-2}
Now solve the equation m=\frac{-1±\sqrt{21}}{-2} when ± is plus. Add -1 to \sqrt{21}.
m=\frac{1-\sqrt{21}}{2}
Divide -1+\sqrt{21} by -2.
m=\frac{-\sqrt{21}-1}{-2}
Now solve the equation m=\frac{-1±\sqrt{21}}{-2} when ± is minus. Subtract \sqrt{21} from -1.
m=\frac{\sqrt{21}+1}{2}
Divide -1-\sqrt{21} by -2.
m=\frac{1-\sqrt{21}}{2} m=\frac{\sqrt{21}+1}{2}
The equation is now solved.
-m^{2}+m+2=-3
Swap sides so that all variable terms are on the left hand side.
-m^{2}+m=-3-2
Subtract 2 from both sides.
-m^{2}+m=-5
Subtract 2 from -3 to get -5.
\frac{-m^{2}+m}{-1}=-\frac{5}{-1}
Divide both sides by -1.
m^{2}+\frac{1}{-1}m=-\frac{5}{-1}
Dividing by -1 undoes the multiplication by -1.
m^{2}-m=-\frac{5}{-1}
Divide 1 by -1.
m^{2}-m=5
Divide -5 by -1.
m^{2}-m+\left(-\frac{1}{2}\right)^{2}=5+\left(-\frac{1}{2}\right)^{2}
Divide -1, the coefficient of the x term, by 2 to get -\frac{1}{2}. Then add the square of -\frac{1}{2} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
m^{2}-m+\frac{1}{4}=5+\frac{1}{4}
Square -\frac{1}{2} by squaring both the numerator and the denominator of the fraction.
m^{2}-m+\frac{1}{4}=\frac{21}{4}
Add 5 to \frac{1}{4}.
\left(m-\frac{1}{2}\right)^{2}=\frac{21}{4}
Factor m^{2}-m+\frac{1}{4}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(m-\frac{1}{2}\right)^{2}}=\sqrt{\frac{21}{4}}
Take the square root of both sides of the equation.
m-\frac{1}{2}=\frac{\sqrt{21}}{2} m-\frac{1}{2}=-\frac{\sqrt{21}}{2}
Simplify.
m=\frac{\sqrt{21}+1}{2} m=\frac{1-\sqrt{21}}{2}
Add \frac{1}{2} to both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}