Skip to main content
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

-3x^{2}+8x=-3
Swap sides so that all variable terms are on the left hand side.
-3x^{2}+8x+3=0
Add 3 to both sides.
a+b=8 ab=-3\times 3=-9
To solve the equation, factor the left hand side by grouping. First, left hand side needs to be rewritten as -3x^{2}+ax+bx+3. To find a and b, set up a system to be solved.
-1,9 -3,3
Since ab is negative, a and b have the opposite signs. Since a+b is positive, the positive number has greater absolute value than the negative. List all such integer pairs that give product -9.
-1+9=8 -3+3=0
Calculate the sum for each pair.
a=9 b=-1
The solution is the pair that gives sum 8.
\left(-3x^{2}+9x\right)+\left(-x+3\right)
Rewrite -3x^{2}+8x+3 as \left(-3x^{2}+9x\right)+\left(-x+3\right).
3x\left(-x+3\right)-x+3
Factor out 3x in -3x^{2}+9x.
\left(-x+3\right)\left(3x+1\right)
Factor out common term -x+3 by using distributive property.
x=3 x=-\frac{1}{3}
To find equation solutions, solve -x+3=0 and 3x+1=0.
-3x^{2}+8x=-3
Swap sides so that all variable terms are on the left hand side.
-3x^{2}+8x+3=0
Add 3 to both sides.
x=\frac{-8±\sqrt{8^{2}-4\left(-3\right)\times 3}}{2\left(-3\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -3 for a, 8 for b, and 3 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-8±\sqrt{64-4\left(-3\right)\times 3}}{2\left(-3\right)}
Square 8.
x=\frac{-8±\sqrt{64+12\times 3}}{2\left(-3\right)}
Multiply -4 times -3.
x=\frac{-8±\sqrt{64+36}}{2\left(-3\right)}
Multiply 12 times 3.
x=\frac{-8±\sqrt{100}}{2\left(-3\right)}
Add 64 to 36.
x=\frac{-8±10}{2\left(-3\right)}
Take the square root of 100.
x=\frac{-8±10}{-6}
Multiply 2 times -3.
x=\frac{2}{-6}
Now solve the equation x=\frac{-8±10}{-6} when ± is plus. Add -8 to 10.
x=-\frac{1}{3}
Reduce the fraction \frac{2}{-6} to lowest terms by extracting and canceling out 2.
x=-\frac{18}{-6}
Now solve the equation x=\frac{-8±10}{-6} when ± is minus. Subtract 10 from -8.
x=3
Divide -18 by -6.
x=-\frac{1}{3} x=3
The equation is now solved.
-3x^{2}+8x=-3
Swap sides so that all variable terms are on the left hand side.
\frac{-3x^{2}+8x}{-3}=-\frac{3}{-3}
Divide both sides by -3.
x^{2}+\frac{8}{-3}x=-\frac{3}{-3}
Dividing by -3 undoes the multiplication by -3.
x^{2}-\frac{8}{3}x=-\frac{3}{-3}
Divide 8 by -3.
x^{2}-\frac{8}{3}x=1
Divide -3 by -3.
x^{2}-\frac{8}{3}x+\left(-\frac{4}{3}\right)^{2}=1+\left(-\frac{4}{3}\right)^{2}
Divide -\frac{8}{3}, the coefficient of the x term, by 2 to get -\frac{4}{3}. Then add the square of -\frac{4}{3} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-\frac{8}{3}x+\frac{16}{9}=1+\frac{16}{9}
Square -\frac{4}{3} by squaring both the numerator and the denominator of the fraction.
x^{2}-\frac{8}{3}x+\frac{16}{9}=\frac{25}{9}
Add 1 to \frac{16}{9}.
\left(x-\frac{4}{3}\right)^{2}=\frac{25}{9}
Factor x^{2}-\frac{8}{3}x+\frac{16}{9}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{4}{3}\right)^{2}}=\sqrt{\frac{25}{9}}
Take the square root of both sides of the equation.
x-\frac{4}{3}=\frac{5}{3} x-\frac{4}{3}=-\frac{5}{3}
Simplify.
x=3 x=-\frac{1}{3}
Add \frac{4}{3} to both sides of the equation.