Solve for x
x=\frac{\sqrt{7}-5}{3}\approx -0.784749563
x=\frac{-\sqrt{7}-5}{3}\approx -2.54858377
Graph
Share
Copied to clipboard
-\frac{3}{2}x^{2}-5x-3=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-\left(-5\right)±\sqrt{\left(-5\right)^{2}-4\left(-\frac{3}{2}\right)\left(-3\right)}}{2\left(-\frac{3}{2}\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -\frac{3}{2} for a, -5 for b, and -3 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-5\right)±\sqrt{25-4\left(-\frac{3}{2}\right)\left(-3\right)}}{2\left(-\frac{3}{2}\right)}
Square -5.
x=\frac{-\left(-5\right)±\sqrt{25+6\left(-3\right)}}{2\left(-\frac{3}{2}\right)}
Multiply -4 times -\frac{3}{2}.
x=\frac{-\left(-5\right)±\sqrt{25-18}}{2\left(-\frac{3}{2}\right)}
Multiply 6 times -3.
x=\frac{-\left(-5\right)±\sqrt{7}}{2\left(-\frac{3}{2}\right)}
Add 25 to -18.
x=\frac{5±\sqrt{7}}{2\left(-\frac{3}{2}\right)}
The opposite of -5 is 5.
x=\frac{5±\sqrt{7}}{-3}
Multiply 2 times -\frac{3}{2}.
x=\frac{\sqrt{7}+5}{-3}
Now solve the equation x=\frac{5±\sqrt{7}}{-3} when ± is plus. Add 5 to \sqrt{7}.
x=\frac{-\sqrt{7}-5}{3}
Divide 5+\sqrt{7} by -3.
x=\frac{5-\sqrt{7}}{-3}
Now solve the equation x=\frac{5±\sqrt{7}}{-3} when ± is minus. Subtract \sqrt{7} from 5.
x=\frac{\sqrt{7}-5}{3}
Divide 5-\sqrt{7} by -3.
x=\frac{-\sqrt{7}-5}{3} x=\frac{\sqrt{7}-5}{3}
The equation is now solved.
-\frac{3}{2}x^{2}-5x-3=0
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
-\frac{3}{2}x^{2}-5x-3-\left(-3\right)=-\left(-3\right)
Add 3 to both sides of the equation.
-\frac{3}{2}x^{2}-5x=-\left(-3\right)
Subtracting -3 from itself leaves 0.
-\frac{3}{2}x^{2}-5x=3
Subtract -3 from 0.
\frac{-\frac{3}{2}x^{2}-5x}{-\frac{3}{2}}=\frac{3}{-\frac{3}{2}}
Divide both sides of the equation by -\frac{3}{2}, which is the same as multiplying both sides by the reciprocal of the fraction.
x^{2}+\left(-\frac{5}{-\frac{3}{2}}\right)x=\frac{3}{-\frac{3}{2}}
Dividing by -\frac{3}{2} undoes the multiplication by -\frac{3}{2}.
x^{2}+\frac{10}{3}x=\frac{3}{-\frac{3}{2}}
Divide -5 by -\frac{3}{2} by multiplying -5 by the reciprocal of -\frac{3}{2}.
x^{2}+\frac{10}{3}x=-2
Divide 3 by -\frac{3}{2} by multiplying 3 by the reciprocal of -\frac{3}{2}.
x^{2}+\frac{10}{3}x+\left(\frac{5}{3}\right)^{2}=-2+\left(\frac{5}{3}\right)^{2}
Divide \frac{10}{3}, the coefficient of the x term, by 2 to get \frac{5}{3}. Then add the square of \frac{5}{3} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}+\frac{10}{3}x+\frac{25}{9}=-2+\frac{25}{9}
Square \frac{5}{3} by squaring both the numerator and the denominator of the fraction.
x^{2}+\frac{10}{3}x+\frac{25}{9}=\frac{7}{9}
Add -2 to \frac{25}{9}.
\left(x+\frac{5}{3}\right)^{2}=\frac{7}{9}
Factor x^{2}+\frac{10}{3}x+\frac{25}{9}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+\frac{5}{3}\right)^{2}}=\sqrt{\frac{7}{9}}
Take the square root of both sides of the equation.
x+\frac{5}{3}=\frac{\sqrt{7}}{3} x+\frac{5}{3}=-\frac{\sqrt{7}}{3}
Simplify.
x=\frac{\sqrt{7}-5}{3} x=\frac{-\sqrt{7}-5}{3}
Subtract \frac{5}{3} from both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}