Solve for n
n=2
Share
Copied to clipboard
\left(-3+\sqrt{4n+1}\right)^{2}=\left(\sqrt{4-2n}\right)^{2}
Square both sides of the equation.
9-6\sqrt{4n+1}+\left(\sqrt{4n+1}\right)^{2}=\left(\sqrt{4-2n}\right)^{2}
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(-3+\sqrt{4n+1}\right)^{2}.
9-6\sqrt{4n+1}+4n+1=\left(\sqrt{4-2n}\right)^{2}
Calculate \sqrt{4n+1} to the power of 2 and get 4n+1.
10-6\sqrt{4n+1}+4n=\left(\sqrt{4-2n}\right)^{2}
Add 9 and 1 to get 10.
10-6\sqrt{4n+1}+4n=4-2n
Calculate \sqrt{4-2n} to the power of 2 and get 4-2n.
-6\sqrt{4n+1}=4-2n-\left(10+4n\right)
Subtract 10+4n from both sides of the equation.
-6\sqrt{4n+1}=4-2n-10-4n
To find the opposite of 10+4n, find the opposite of each term.
-6\sqrt{4n+1}=-6-2n-4n
Subtract 10 from 4 to get -6.
-6\sqrt{4n+1}=-6-6n
Combine -2n and -4n to get -6n.
\left(-6\sqrt{4n+1}\right)^{2}=\left(-6-6n\right)^{2}
Square both sides of the equation.
\left(-6\right)^{2}\left(\sqrt{4n+1}\right)^{2}=\left(-6-6n\right)^{2}
Expand \left(-6\sqrt{4n+1}\right)^{2}.
36\left(\sqrt{4n+1}\right)^{2}=\left(-6-6n\right)^{2}
Calculate -6 to the power of 2 and get 36.
36\left(4n+1\right)=\left(-6-6n\right)^{2}
Calculate \sqrt{4n+1} to the power of 2 and get 4n+1.
144n+36=\left(-6-6n\right)^{2}
Use the distributive property to multiply 36 by 4n+1.
144n+36=36+72n+36n^{2}
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(-6-6n\right)^{2}.
144n+36-36=72n+36n^{2}
Subtract 36 from both sides.
144n=72n+36n^{2}
Subtract 36 from 36 to get 0.
144n-72n=36n^{2}
Subtract 72n from both sides.
72n=36n^{2}
Combine 144n and -72n to get 72n.
72n-36n^{2}=0
Subtract 36n^{2} from both sides.
n\left(72-36n\right)=0
Factor out n.
n=0 n=2
To find equation solutions, solve n=0 and 72-36n=0.
-3+\sqrt{4\times 0+1}=\sqrt{4-2\times 0}
Substitute 0 for n in the equation -3+\sqrt{4n+1}=\sqrt{4-2n}.
-2=2
Simplify. The value n=0 does not satisfy the equation because the left and the right hand side have opposite signs.
-3+\sqrt{4\times 2+1}=\sqrt{4-2\times 2}
Substitute 2 for n in the equation -3+\sqrt{4n+1}=\sqrt{4-2n}.
0=0
Simplify. The value n=2 satisfies the equation.
n=2
Equation \sqrt{4n+1}-3=\sqrt{4-2n} has a unique solution.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}