Skip to main content
Factor
Tick mark Image
Evaluate
Tick mark Image
Graph

Similar Problems from Web Search

Share

7\left(-4x^{2}+5x\right)
Factor out 7.
x\left(-4x+5\right)
Consider -4x^{2}+5x. Factor out x.
7x\left(-4x+5\right)
Rewrite the complete factored expression.
-28x^{2}+35x=0
Quadratic polynomial can be factored using the transformation ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), where x_{1} and x_{2} are the solutions of the quadratic equation ax^{2}+bx+c=0.
x=\frac{-35±\sqrt{35^{2}}}{2\left(-28\right)}
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-35±35}{2\left(-28\right)}
Take the square root of 35^{2}.
x=\frac{-35±35}{-56}
Multiply 2 times -28.
x=\frac{0}{-56}
Now solve the equation x=\frac{-35±35}{-56} when ± is plus. Add -35 to 35.
x=0
Divide 0 by -56.
x=-\frac{70}{-56}
Now solve the equation x=\frac{-35±35}{-56} when ± is minus. Subtract 35 from -35.
x=\frac{5}{4}
Reduce the fraction \frac{-70}{-56} to lowest terms by extracting and canceling out 14.
-28x^{2}+35x=-28x\left(x-\frac{5}{4}\right)
Factor the original expression using ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Substitute 0 for x_{1} and \frac{5}{4} for x_{2}.
-28x^{2}+35x=-28x\times \frac{-4x+5}{-4}
Subtract \frac{5}{4} from x by finding a common denominator and subtracting the numerators. Then reduce the fraction to lowest terms if possible.
-28x^{2}+35x=7x\left(-4x+5\right)
Cancel out 4, the greatest common factor in -28 and -4.