Solve for v
v>5
Share
Copied to clipboard
-28+35-5v<-2\left(v+4\right)
Use the distributive property to multiply 5 by 7-v.
7-5v<-2\left(v+4\right)
Add -28 and 35 to get 7.
7-5v<-2v-8
Use the distributive property to multiply -2 by v+4.
7-5v+2v<-8
Add 2v to both sides.
7-3v<-8
Combine -5v and 2v to get -3v.
-3v<-8-7
Subtract 7 from both sides.
-3v<-15
Subtract 7 from -8 to get -15.
v>\frac{-15}{-3}
Divide both sides by -3. Since -3 is negative, the inequality direction is changed.
v>5
Divide -15 by -3 to get 5.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}