Solve for x
x=-9
x=0
Graph
Share
Copied to clipboard
-270x-30x^{2}=0
Subtract 30x^{2} from both sides.
x\left(-270-30x\right)=0
Factor out x.
x=0 x=-9
To find equation solutions, solve x=0 and -270-30x=0.
-270x-30x^{2}=0
Subtract 30x^{2} from both sides.
-30x^{2}-270x=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-\left(-270\right)±\sqrt{\left(-270\right)^{2}}}{2\left(-30\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -30 for a, -270 for b, and 0 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-270\right)±270}{2\left(-30\right)}
Take the square root of \left(-270\right)^{2}.
x=\frac{270±270}{2\left(-30\right)}
The opposite of -270 is 270.
x=\frac{270±270}{-60}
Multiply 2 times -30.
x=\frac{540}{-60}
Now solve the equation x=\frac{270±270}{-60} when ± is plus. Add 270 to 270.
x=-9
Divide 540 by -60.
x=\frac{0}{-60}
Now solve the equation x=\frac{270±270}{-60} when ± is minus. Subtract 270 from 270.
x=0
Divide 0 by -60.
x=-9 x=0
The equation is now solved.
-270x-30x^{2}=0
Subtract 30x^{2} from both sides.
-30x^{2}-270x=0
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
\frac{-30x^{2}-270x}{-30}=\frac{0}{-30}
Divide both sides by -30.
x^{2}+\left(-\frac{270}{-30}\right)x=\frac{0}{-30}
Dividing by -30 undoes the multiplication by -30.
x^{2}+9x=\frac{0}{-30}
Divide -270 by -30.
x^{2}+9x=0
Divide 0 by -30.
x^{2}+9x+\left(\frac{9}{2}\right)^{2}=\left(\frac{9}{2}\right)^{2}
Divide 9, the coefficient of the x term, by 2 to get \frac{9}{2}. Then add the square of \frac{9}{2} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}+9x+\frac{81}{4}=\frac{81}{4}
Square \frac{9}{2} by squaring both the numerator and the denominator of the fraction.
\left(x+\frac{9}{2}\right)^{2}=\frac{81}{4}
Factor x^{2}+9x+\frac{81}{4}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+\frac{9}{2}\right)^{2}}=\sqrt{\frac{81}{4}}
Take the square root of both sides of the equation.
x+\frac{9}{2}=\frac{9}{2} x+\frac{9}{2}=-\frac{9}{2}
Simplify.
x=0 x=-9
Subtract \frac{9}{2} from both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}