Solve for x (complex solution)
x=\frac{-\sqrt{17}i+2}{9}\approx 0.222222222-0.458122847i
x=\frac{2+\sqrt{17}i}{9}\approx 0.222222222+0.458122847i
Graph
Share
Copied to clipboard
-27x^{2}+12x-7=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-12±\sqrt{12^{2}-4\left(-27\right)\left(-7\right)}}{2\left(-27\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -27 for a, 12 for b, and -7 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-12±\sqrt{144-4\left(-27\right)\left(-7\right)}}{2\left(-27\right)}
Square 12.
x=\frac{-12±\sqrt{144+108\left(-7\right)}}{2\left(-27\right)}
Multiply -4 times -27.
x=\frac{-12±\sqrt{144-756}}{2\left(-27\right)}
Multiply 108 times -7.
x=\frac{-12±\sqrt{-612}}{2\left(-27\right)}
Add 144 to -756.
x=\frac{-12±6\sqrt{17}i}{2\left(-27\right)}
Take the square root of -612.
x=\frac{-12±6\sqrt{17}i}{-54}
Multiply 2 times -27.
x=\frac{-12+6\sqrt{17}i}{-54}
Now solve the equation x=\frac{-12±6\sqrt{17}i}{-54} when ± is plus. Add -12 to 6i\sqrt{17}.
x=\frac{-\sqrt{17}i+2}{9}
Divide -12+6i\sqrt{17} by -54.
x=\frac{-6\sqrt{17}i-12}{-54}
Now solve the equation x=\frac{-12±6\sqrt{17}i}{-54} when ± is minus. Subtract 6i\sqrt{17} from -12.
x=\frac{2+\sqrt{17}i}{9}
Divide -12-6i\sqrt{17} by -54.
x=\frac{-\sqrt{17}i+2}{9} x=\frac{2+\sqrt{17}i}{9}
The equation is now solved.
-27x^{2}+12x-7=0
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
-27x^{2}+12x-7-\left(-7\right)=-\left(-7\right)
Add 7 to both sides of the equation.
-27x^{2}+12x=-\left(-7\right)
Subtracting -7 from itself leaves 0.
-27x^{2}+12x=7
Subtract -7 from 0.
\frac{-27x^{2}+12x}{-27}=\frac{7}{-27}
Divide both sides by -27.
x^{2}+\frac{12}{-27}x=\frac{7}{-27}
Dividing by -27 undoes the multiplication by -27.
x^{2}-\frac{4}{9}x=\frac{7}{-27}
Reduce the fraction \frac{12}{-27} to lowest terms by extracting and canceling out 3.
x^{2}-\frac{4}{9}x=-\frac{7}{27}
Divide 7 by -27.
x^{2}-\frac{4}{9}x+\left(-\frac{2}{9}\right)^{2}=-\frac{7}{27}+\left(-\frac{2}{9}\right)^{2}
Divide -\frac{4}{9}, the coefficient of the x term, by 2 to get -\frac{2}{9}. Then add the square of -\frac{2}{9} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-\frac{4}{9}x+\frac{4}{81}=-\frac{7}{27}+\frac{4}{81}
Square -\frac{2}{9} by squaring both the numerator and the denominator of the fraction.
x^{2}-\frac{4}{9}x+\frac{4}{81}=-\frac{17}{81}
Add -\frac{7}{27} to \frac{4}{81} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(x-\frac{2}{9}\right)^{2}=-\frac{17}{81}
Factor x^{2}-\frac{4}{9}x+\frac{4}{81}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{2}{9}\right)^{2}}=\sqrt{-\frac{17}{81}}
Take the square root of both sides of the equation.
x-\frac{2}{9}=\frac{\sqrt{17}i}{9} x-\frac{2}{9}=-\frac{\sqrt{17}i}{9}
Simplify.
x=\frac{2+\sqrt{17}i}{9} x=\frac{-\sqrt{17}i+2}{9}
Add \frac{2}{9} to both sides of the equation.
x ^ 2 -\frac{4}{9}x +\frac{7}{27} = 0
Quadratic equations such as this one can be solved by a new direct factoring method that does not require guess work. To use the direct factoring method, the equation must be in the form x^2+Bx+C=0.
r + s = \frac{4}{9} rs = \frac{7}{27}
Let r and s be the factors for the quadratic equation such that x^2+Bx+C=(x−r)(x−s) where sum of factors (r+s)=−B and the product of factors rs = C
r = \frac{2}{9} - u s = \frac{2}{9} + u
Two numbers r and s sum up to \frac{4}{9} exactly when the average of the two numbers is \frac{1}{2}*\frac{4}{9} = \frac{2}{9}. You can also see that the midpoint of r and s corresponds to the axis of symmetry of the parabola represented by the quadratic equation y=x^2+Bx+C. The values of r and s are equidistant from the center by an unknown quantity u. Express r and s with respect to variable u. <div style='padding: 8px'><img src='https://opalmath.azureedge.net/customsolver/quadraticgraph.png' style='width: 100%;max-width: 700px' /></div>
(\frac{2}{9} - u) (\frac{2}{9} + u) = \frac{7}{27}
To solve for unknown quantity u, substitute these in the product equation rs = \frac{7}{27}
\frac{4}{81} - u^2 = \frac{7}{27}
Simplify by expanding (a -b) (a + b) = a^2 – b^2
-u^2 = \frac{7}{27}-\frac{4}{81} = \frac{17}{81}
Simplify the expression by subtracting \frac{4}{81} on both sides
u^2 = -\frac{17}{81} u = \pm\sqrt{-\frac{17}{81}} = \pm \frac{\sqrt{17}}{9}i
Simplify the expression by multiplying -1 on both sides and take the square root to obtain the value of unknown variable u
r =\frac{2}{9} - \frac{\sqrt{17}}{9}i = 0.222 - 0.458i s = \frac{2}{9} + \frac{\sqrt{17}}{9}i = 0.222 + 0.458i
The factors r and s are the solutions to the quadratic equation. Substitute the value of u to compute the r and s.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}