Factor
3\left(-m-1\right)\left(9m+8\right)
Evaluate
-27m^{2}-51m-24
Share
Copied to clipboard
3\left(-9m^{2}-17m-8\right)
Factor out 3.
a+b=-17 ab=-9\left(-8\right)=72
Consider -9m^{2}-17m-8. Factor the expression by grouping. First, the expression needs to be rewritten as -9m^{2}+am+bm-8. To find a and b, set up a system to be solved.
-1,-72 -2,-36 -3,-24 -4,-18 -6,-12 -8,-9
Since ab is positive, a and b have the same sign. Since a+b is negative, a and b are both negative. List all such integer pairs that give product 72.
-1-72=-73 -2-36=-38 -3-24=-27 -4-18=-22 -6-12=-18 -8-9=-17
Calculate the sum for each pair.
a=-8 b=-9
The solution is the pair that gives sum -17.
\left(-9m^{2}-8m\right)+\left(-9m-8\right)
Rewrite -9m^{2}-17m-8 as \left(-9m^{2}-8m\right)+\left(-9m-8\right).
-m\left(9m+8\right)-\left(9m+8\right)
Factor out -m in the first and -1 in the second group.
\left(9m+8\right)\left(-m-1\right)
Factor out common term 9m+8 by using distributive property.
3\left(9m+8\right)\left(-m-1\right)
Rewrite the complete factored expression.
-27m^{2}-51m-24=0
Quadratic polynomial can be factored using the transformation ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), where x_{1} and x_{2} are the solutions of the quadratic equation ax^{2}+bx+c=0.
m=\frac{-\left(-51\right)±\sqrt{\left(-51\right)^{2}-4\left(-27\right)\left(-24\right)}}{2\left(-27\right)}
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
m=\frac{-\left(-51\right)±\sqrt{2601-4\left(-27\right)\left(-24\right)}}{2\left(-27\right)}
Square -51.
m=\frac{-\left(-51\right)±\sqrt{2601+108\left(-24\right)}}{2\left(-27\right)}
Multiply -4 times -27.
m=\frac{-\left(-51\right)±\sqrt{2601-2592}}{2\left(-27\right)}
Multiply 108 times -24.
m=\frac{-\left(-51\right)±\sqrt{9}}{2\left(-27\right)}
Add 2601 to -2592.
m=\frac{-\left(-51\right)±3}{2\left(-27\right)}
Take the square root of 9.
m=\frac{51±3}{2\left(-27\right)}
The opposite of -51 is 51.
m=\frac{51±3}{-54}
Multiply 2 times -27.
m=\frac{54}{-54}
Now solve the equation m=\frac{51±3}{-54} when ± is plus. Add 51 to 3.
m=-1
Divide 54 by -54.
m=\frac{48}{-54}
Now solve the equation m=\frac{51±3}{-54} when ± is minus. Subtract 3 from 51.
m=-\frac{8}{9}
Reduce the fraction \frac{48}{-54} to lowest terms by extracting and canceling out 6.
-27m^{2}-51m-24=-27\left(m-\left(-1\right)\right)\left(m-\left(-\frac{8}{9}\right)\right)
Factor the original expression using ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Substitute -1 for x_{1} and -\frac{8}{9} for x_{2}.
-27m^{2}-51m-24=-27\left(m+1\right)\left(m+\frac{8}{9}\right)
Simplify all the expressions of the form p-\left(-q\right) to p+q.
-27m^{2}-51m-24=-27\left(m+1\right)\times \frac{-9m-8}{-9}
Add \frac{8}{9} to m by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
-27m^{2}-51m-24=3\left(m+1\right)\left(-9m-8\right)
Cancel out 9, the greatest common factor in -27 and 9.
x ^ 2 +\frac{17}{9}x +\frac{8}{9} = 0
Quadratic equations such as this one can be solved by a new direct factoring method that does not require guess work. To use the direct factoring method, the equation must be in the form x^2+Bx+C=0.
r + s = -\frac{17}{9} rs = \frac{8}{9}
Let r and s be the factors for the quadratic equation such that x^2+Bx+C=(x−r)(x−s) where sum of factors (r+s)=−B and the product of factors rs = C
r = -\frac{17}{18} - u s = -\frac{17}{18} + u
Two numbers r and s sum up to -\frac{17}{9} exactly when the average of the two numbers is \frac{1}{2}*-\frac{17}{9} = -\frac{17}{18}. You can also see that the midpoint of r and s corresponds to the axis of symmetry of the parabola represented by the quadratic equation y=x^2+Bx+C. The values of r and s are equidistant from the center by an unknown quantity u. Express r and s with respect to variable u. <div style='padding: 8px'><img src='https://opalmath.azureedge.net/customsolver/quadraticgraph.png' style='width: 100%;max-width: 700px' /></div>
(-\frac{17}{18} - u) (-\frac{17}{18} + u) = \frac{8}{9}
To solve for unknown quantity u, substitute these in the product equation rs = \frac{8}{9}
\frac{289}{324} - u^2 = \frac{8}{9}
Simplify by expanding (a -b) (a + b) = a^2 – b^2
-u^2 = \frac{8}{9}-\frac{289}{324} = -\frac{1}{324}
Simplify the expression by subtracting \frac{289}{324} on both sides
u^2 = \frac{1}{324} u = \pm\sqrt{\frac{1}{324}} = \pm \frac{1}{18}
Simplify the expression by multiplying -1 on both sides and take the square root to obtain the value of unknown variable u
r =-\frac{17}{18} - \frac{1}{18} = -1 s = -\frac{17}{18} + \frac{1}{18} = -0.889
The factors r and s are the solutions to the quadratic equation. Substitute the value of u to compute the r and s.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}