- 25 c ^ { 5 } \cdot ( - 0,3 c ^ { 3 } ) ^ { 3 } =
Evaluate
\frac{27c^{14}}{40}
Expand
\frac{27c^{14}}{40}
Share
Copied to clipboard
-25c^{5}\left(-0,3\right)^{3}\left(c^{3}\right)^{3}
Expand \left(-0,3c^{3}\right)^{3}.
-25c^{5}\left(-0,3\right)^{3}c^{9}
To raise a power to another power, multiply the exponents. Multiply 3 and 3 to get 9.
-25c^{5}\left(-0,027\right)c^{9}
Calculate -0,3 to the power of 3 and get -0,027.
0,675c^{5}c^{9}
Multiply -25 and -0,027 to get 0,675.
0,675c^{14}
To multiply powers of the same base, add their exponents. Add 5 and 9 to get 14.
-25c^{5}\left(-0,3\right)^{3}\left(c^{3}\right)^{3}
Expand \left(-0,3c^{3}\right)^{3}.
-25c^{5}\left(-0,3\right)^{3}c^{9}
To raise a power to another power, multiply the exponents. Multiply 3 and 3 to get 9.
-25c^{5}\left(-0,027\right)c^{9}
Calculate -0,3 to the power of 3 and get -0,027.
0,675c^{5}c^{9}
Multiply -25 and -0,027 to get 0,675.
0,675c^{14}
To multiply powers of the same base, add their exponents. Add 5 and 9 to get 14.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}