Skip to main content
Factor
Tick mark Image
Evaluate
Tick mark Image
Graph

Similar Problems from Web Search

Share

6\left(-4x^{2}+3x\right)
Factor out 6.
x\left(-4x+3\right)
Consider -4x^{2}+3x. Factor out x.
6x\left(-4x+3\right)
Rewrite the complete factored expression.
-24x^{2}+18x=0
Quadratic polynomial can be factored using the transformation ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), where x_{1} and x_{2} are the solutions of the quadratic equation ax^{2}+bx+c=0.
x=\frac{-18±\sqrt{18^{2}}}{2\left(-24\right)}
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-18±18}{2\left(-24\right)}
Take the square root of 18^{2}.
x=\frac{-18±18}{-48}
Multiply 2 times -24.
x=\frac{0}{-48}
Now solve the equation x=\frac{-18±18}{-48} when ± is plus. Add -18 to 18.
x=0
Divide 0 by -48.
x=-\frac{36}{-48}
Now solve the equation x=\frac{-18±18}{-48} when ± is minus. Subtract 18 from -18.
x=\frac{3}{4}
Reduce the fraction \frac{-36}{-48} to lowest terms by extracting and canceling out 12.
-24x^{2}+18x=-24x\left(x-\frac{3}{4}\right)
Factor the original expression using ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Substitute 0 for x_{1} and \frac{3}{4} for x_{2}.
-24x^{2}+18x=-24x\times \frac{-4x+3}{-4}
Subtract \frac{3}{4} from x by finding a common denominator and subtracting the numerators. Then reduce the fraction to lowest terms if possible.
-24x^{2}+18x=6x\left(-4x+3\right)
Cancel out 4, the greatest common factor in -24 and -4.