Solve for a
a=\frac{b}{4450}
b\neq 0
Solve for b
b=4450a
a\neq 0
Share
Copied to clipboard
-4450a=-b
Variable a cannot be equal to 0 since division by zero is not defined. Multiply both sides of the equation by 2a.
\frac{-4450a}{-4450}=-\frac{b}{-4450}
Divide both sides by -4450.
a=-\frac{b}{-4450}
Dividing by -4450 undoes the multiplication by -4450.
a=\frac{b}{4450}
Divide -b by -4450.
a=\frac{b}{4450}\text{, }a\neq 0
Variable a cannot be equal to 0.
-4450a=-b
Multiply both sides of the equation by 2a.
-b=-4450a
Swap sides so that all variable terms are on the left hand side.
\frac{-b}{-1}=-\frac{4450a}{-1}
Divide both sides by -1.
b=-\frac{4450a}{-1}
Dividing by -1 undoes the multiplication by -1.
b=4450a
Divide -4450a by -1.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}