Solve for a
a=\frac{441b}{100}+\frac{7}{120000}
Solve for b
b=\frac{100a}{441}-\frac{1}{75600}
Share
Copied to clipboard
-40920b+12000\left(a-b\right)=0.7
Multiply -220 and 186 to get -40920.
-40920b+12000a-12000b=0.7
Use the distributive property to multiply 12000 by a-b.
-52920b+12000a=0.7
Combine -40920b and -12000b to get -52920b.
12000a=0.7+52920b
Add 52920b to both sides.
12000a=52920b+0.7
The equation is in standard form.
\frac{12000a}{12000}=\frac{52920b+0.7}{12000}
Divide both sides by 12000.
a=\frac{52920b+0.7}{12000}
Dividing by 12000 undoes the multiplication by 12000.
a=\frac{441b}{100}+\frac{7}{120000}
Divide 0.7+52920b by 12000.
-40920b+12000\left(a-b\right)=0.7
Multiply -220 and 186 to get -40920.
-40920b+12000a-12000b=0.7
Use the distributive property to multiply 12000 by a-b.
-52920b+12000a=0.7
Combine -40920b and -12000b to get -52920b.
-52920b=0.7-12000a
Subtract 12000a from both sides.
\frac{-52920b}{-52920}=\frac{0.7-12000a}{-52920}
Divide both sides by -52920.
b=\frac{0.7-12000a}{-52920}
Dividing by -52920 undoes the multiplication by -52920.
b=\frac{100a}{441}-\frac{1}{75600}
Divide 0.7-12000a by -52920.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}