Skip to main content
Solve for a
Tick mark Image

Similar Problems from Web Search

Share

-21=\left(a-5\right)^{2}
Multiply a-5 and a-5 to get \left(a-5\right)^{2}.
-21=a^{2}-10a+25
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(a-5\right)^{2}.
a^{2}-10a+25=-21
Swap sides so that all variable terms are on the left hand side.
a^{2}-10a+25+21=0
Add 21 to both sides.
a^{2}-10a+46=0
Add 25 and 21 to get 46.
a=\frac{-\left(-10\right)±\sqrt{\left(-10\right)^{2}-4\times 46}}{2}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 1 for a, -10 for b, and 46 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
a=\frac{-\left(-10\right)±\sqrt{100-4\times 46}}{2}
Square -10.
a=\frac{-\left(-10\right)±\sqrt{100-184}}{2}
Multiply -4 times 46.
a=\frac{-\left(-10\right)±\sqrt{-84}}{2}
Add 100 to -184.
a=\frac{-\left(-10\right)±2\sqrt{21}i}{2}
Take the square root of -84.
a=\frac{10±2\sqrt{21}i}{2}
The opposite of -10 is 10.
a=\frac{10+2\sqrt{21}i}{2}
Now solve the equation a=\frac{10±2\sqrt{21}i}{2} when ± is plus. Add 10 to 2i\sqrt{21}.
a=5+\sqrt{21}i
Divide 10+2i\sqrt{21} by 2.
a=\frac{-2\sqrt{21}i+10}{2}
Now solve the equation a=\frac{10±2\sqrt{21}i}{2} when ± is minus. Subtract 2i\sqrt{21} from 10.
a=-\sqrt{21}i+5
Divide 10-2i\sqrt{21} by 2.
a=5+\sqrt{21}i a=-\sqrt{21}i+5
The equation is now solved.
-21=\left(a-5\right)^{2}
Multiply a-5 and a-5 to get \left(a-5\right)^{2}.
-21=a^{2}-10a+25
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(a-5\right)^{2}.
a^{2}-10a+25=-21
Swap sides so that all variable terms are on the left hand side.
\left(a-5\right)^{2}=-21
Factor a^{2}-10a+25. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(a-5\right)^{2}}=\sqrt{-21}
Take the square root of both sides of the equation.
a-5=\sqrt{21}i a-5=-\sqrt{21}i
Simplify.
a=5+\sqrt{21}i a=-\sqrt{21}i+5
Add 5 to both sides of the equation.