Evaluate
\frac{20\left(257-1158x-2410x^{2}-1000x^{3}\right)}{\left(x+1\right)^{3}}
Expand
-\frac{20\left(1000x^{3}+2410x^{2}+1158x-257\right)}{\left(x+1\right)^{3}}
Graph
Share
Copied to clipboard
-\frac{20000\left(1+x\right)}{1+x}+\frac{11800}{1+x}+\frac{13240}{\left(1+x\right)^{2}}+\frac{100}{\left(1+x\right)^{3}}
To add or subtract expressions, expand them to make their denominators the same. Multiply -20000 times \frac{1+x}{1+x}.
\frac{-20000\left(1+x\right)+11800}{1+x}+\frac{13240}{\left(1+x\right)^{2}}+\frac{100}{\left(1+x\right)^{3}}
Since -\frac{20000\left(1+x\right)}{1+x} and \frac{11800}{1+x} have the same denominator, add them by adding their numerators.
\frac{-20000-20000x+11800}{1+x}+\frac{13240}{\left(1+x\right)^{2}}+\frac{100}{\left(1+x\right)^{3}}
Do the multiplications in -20000\left(1+x\right)+11800.
\frac{-8200-20000x}{1+x}+\frac{13240}{\left(1+x\right)^{2}}+\frac{100}{\left(1+x\right)^{3}}
Combine like terms in -20000-20000x+11800.
\frac{\left(-8200-20000x\right)\left(x+1\right)}{\left(x+1\right)^{2}}+\frac{13240}{\left(x+1\right)^{2}}+\frac{100}{\left(1+x\right)^{3}}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of 1+x and \left(1+x\right)^{2} is \left(x+1\right)^{2}. Multiply \frac{-8200-20000x}{1+x} times \frac{x+1}{x+1}.
\frac{\left(-8200-20000x\right)\left(x+1\right)+13240}{\left(x+1\right)^{2}}+\frac{100}{\left(1+x\right)^{3}}
Since \frac{\left(-8200-20000x\right)\left(x+1\right)}{\left(x+1\right)^{2}} and \frac{13240}{\left(x+1\right)^{2}} have the same denominator, add them by adding their numerators.
\frac{-8200x-8200-20000x^{2}-20000x+13240}{\left(x+1\right)^{2}}+\frac{100}{\left(1+x\right)^{3}}
Do the multiplications in \left(-8200-20000x\right)\left(x+1\right)+13240.
\frac{-28200x+5040-20000x^{2}}{\left(x+1\right)^{2}}+\frac{100}{\left(1+x\right)^{3}}
Combine like terms in -8200x-8200-20000x^{2}-20000x+13240.
\frac{\left(-28200x+5040-20000x^{2}\right)\left(x+1\right)}{\left(x+1\right)^{3}}+\frac{100}{\left(x+1\right)^{3}}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of \left(x+1\right)^{2} and \left(1+x\right)^{3} is \left(x+1\right)^{3}. Multiply \frac{-28200x+5040-20000x^{2}}{\left(x+1\right)^{2}} times \frac{x+1}{x+1}.
\frac{\left(-28200x+5040-20000x^{2}\right)\left(x+1\right)+100}{\left(x+1\right)^{3}}
Since \frac{\left(-28200x+5040-20000x^{2}\right)\left(x+1\right)}{\left(x+1\right)^{3}} and \frac{100}{\left(x+1\right)^{3}} have the same denominator, add them by adding their numerators.
\frac{-28200x^{2}-28200x+5040x+5040-20000x^{3}-20000x^{2}+100}{\left(x+1\right)^{3}}
Do the multiplications in \left(-28200x+5040-20000x^{2}\right)\left(x+1\right)+100.
\frac{-48200x^{2}-23160x+5140-20000x^{3}}{\left(x+1\right)^{3}}
Combine like terms in -28200x^{2}-28200x+5040x+5040-20000x^{3}-20000x^{2}+100.
\frac{-48200x^{2}-23160x+5140-20000x^{3}}{x^{3}+3x^{2}+3x+1}
Expand \left(x+1\right)^{3}.
-\frac{20000\left(1+x\right)}{1+x}+\frac{11800}{1+x}+\frac{13240}{\left(1+x\right)^{2}}+\frac{100}{\left(1+x\right)^{3}}
To add or subtract expressions, expand them to make their denominators the same. Multiply -20000 times \frac{1+x}{1+x}.
\frac{-20000\left(1+x\right)+11800}{1+x}+\frac{13240}{\left(1+x\right)^{2}}+\frac{100}{\left(1+x\right)^{3}}
Since -\frac{20000\left(1+x\right)}{1+x} and \frac{11800}{1+x} have the same denominator, add them by adding their numerators.
\frac{-20000-20000x+11800}{1+x}+\frac{13240}{\left(1+x\right)^{2}}+\frac{100}{\left(1+x\right)^{3}}
Do the multiplications in -20000\left(1+x\right)+11800.
\frac{-8200-20000x}{1+x}+\frac{13240}{\left(1+x\right)^{2}}+\frac{100}{\left(1+x\right)^{3}}
Combine like terms in -20000-20000x+11800.
\frac{\left(-8200-20000x\right)\left(x+1\right)}{\left(x+1\right)^{2}}+\frac{13240}{\left(x+1\right)^{2}}+\frac{100}{\left(1+x\right)^{3}}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of 1+x and \left(1+x\right)^{2} is \left(x+1\right)^{2}. Multiply \frac{-8200-20000x}{1+x} times \frac{x+1}{x+1}.
\frac{\left(-8200-20000x\right)\left(x+1\right)+13240}{\left(x+1\right)^{2}}+\frac{100}{\left(1+x\right)^{3}}
Since \frac{\left(-8200-20000x\right)\left(x+1\right)}{\left(x+1\right)^{2}} and \frac{13240}{\left(x+1\right)^{2}} have the same denominator, add them by adding their numerators.
\frac{-8200x-8200-20000x^{2}-20000x+13240}{\left(x+1\right)^{2}}+\frac{100}{\left(1+x\right)^{3}}
Do the multiplications in \left(-8200-20000x\right)\left(x+1\right)+13240.
\frac{-28200x+5040-20000x^{2}}{\left(x+1\right)^{2}}+\frac{100}{\left(1+x\right)^{3}}
Combine like terms in -8200x-8200-20000x^{2}-20000x+13240.
\frac{\left(-28200x+5040-20000x^{2}\right)\left(x+1\right)}{\left(x+1\right)^{3}}+\frac{100}{\left(x+1\right)^{3}}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of \left(x+1\right)^{2} and \left(1+x\right)^{3} is \left(x+1\right)^{3}. Multiply \frac{-28200x+5040-20000x^{2}}{\left(x+1\right)^{2}} times \frac{x+1}{x+1}.
\frac{\left(-28200x+5040-20000x^{2}\right)\left(x+1\right)+100}{\left(x+1\right)^{3}}
Since \frac{\left(-28200x+5040-20000x^{2}\right)\left(x+1\right)}{\left(x+1\right)^{3}} and \frac{100}{\left(x+1\right)^{3}} have the same denominator, add them by adding their numerators.
\frac{-28200x^{2}-28200x+5040x+5040-20000x^{3}-20000x^{2}+100}{\left(x+1\right)^{3}}
Do the multiplications in \left(-28200x+5040-20000x^{2}\right)\left(x+1\right)+100.
\frac{-48200x^{2}-23160x+5140-20000x^{3}}{\left(x+1\right)^{3}}
Combine like terms in -28200x^{2}-28200x+5040x+5040-20000x^{3}-20000x^{2}+100.
\frac{-48200x^{2}-23160x+5140-20000x^{3}}{x^{3}+3x^{2}+3x+1}
Expand \left(x+1\right)^{3}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}