Solve for t
t=\frac{\sqrt{55211}-509}{100}\approx -2.740297891
t=\frac{-\sqrt{55211}-509}{100}\approx -7.439702109
Share
Copied to clipboard
10.18t+t^{2}=-20.387
Swap sides so that all variable terms are on the left hand side.
10.18t+t^{2}+20.387=0
Add 20.387 to both sides.
t^{2}+10.18t+20.387=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
t=\frac{-10.18±\sqrt{10.18^{2}-4\times 20.387}}{2}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 1 for a, 10.18 for b, and 20.387 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
t=\frac{-10.18±\sqrt{103.6324-4\times 20.387}}{2}
Square 10.18 by squaring both the numerator and the denominator of the fraction.
t=\frac{-10.18±\sqrt{103.6324-81.548}}{2}
Multiply -4 times 20.387.
t=\frac{-10.18±\sqrt{22.0844}}{2}
Add 103.6324 to -81.548 by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
t=\frac{-10.18±\frac{\sqrt{55211}}{50}}{2}
Take the square root of 22.0844.
t=\frac{\sqrt{55211}-509}{2\times 50}
Now solve the equation t=\frac{-10.18±\frac{\sqrt{55211}}{50}}{2} when ± is plus. Add -10.18 to \frac{\sqrt{55211}}{50}.
t=\frac{\sqrt{55211}-509}{100}
Divide \frac{-509+\sqrt{55211}}{50} by 2.
t=\frac{-\sqrt{55211}-509}{2\times 50}
Now solve the equation t=\frac{-10.18±\frac{\sqrt{55211}}{50}}{2} when ± is minus. Subtract \frac{\sqrt{55211}}{50} from -10.18.
t=\frac{-\sqrt{55211}-509}{100}
Divide \frac{-509-\sqrt{55211}}{50} by 2.
t=\frac{\sqrt{55211}-509}{100} t=\frac{-\sqrt{55211}-509}{100}
The equation is now solved.
10.18t+t^{2}=-20.387
Swap sides so that all variable terms are on the left hand side.
t^{2}+10.18t=-20.387
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
t^{2}+10.18t+5.09^{2}=-20.387+5.09^{2}
Divide 10.18, the coefficient of the x term, by 2 to get 5.09. Then add the square of 5.09 to both sides of the equation. This step makes the left hand side of the equation a perfect square.
t^{2}+10.18t+25.9081=-20.387+25.9081
Square 5.09 by squaring both the numerator and the denominator of the fraction.
t^{2}+10.18t+25.9081=5.5211
Add -20.387 to 25.9081 by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(t+5.09\right)^{2}=5.5211
Factor t^{2}+10.18t+25.9081. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(t+5.09\right)^{2}}=\sqrt{5.5211}
Take the square root of both sides of the equation.
t+5.09=\frac{\sqrt{55211}}{100} t+5.09=-\frac{\sqrt{55211}}{100}
Simplify.
t=\frac{\sqrt{55211}-509}{100} t=\frac{-\sqrt{55211}-509}{100}
Subtract 5.09 from both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}