Factor
4\left(8-b\right)\left(5b+6\right)
Evaluate
192+136b-20b^{2}
Share
Copied to clipboard
4\left(-5b^{2}+34b+48\right)
Factor out 4.
p+q=34 pq=-5\times 48=-240
Consider -5b^{2}+34b+48. Factor the expression by grouping. First, the expression needs to be rewritten as -5b^{2}+pb+qb+48. To find p and q, set up a system to be solved.
-1,240 -2,120 -3,80 -4,60 -5,48 -6,40 -8,30 -10,24 -12,20 -15,16
Since pq is negative, p and q have the opposite signs. Since p+q is positive, the positive number has greater absolute value than the negative. List all such integer pairs that give product -240.
-1+240=239 -2+120=118 -3+80=77 -4+60=56 -5+48=43 -6+40=34 -8+30=22 -10+24=14 -12+20=8 -15+16=1
Calculate the sum for each pair.
p=40 q=-6
The solution is the pair that gives sum 34.
\left(-5b^{2}+40b\right)+\left(-6b+48\right)
Rewrite -5b^{2}+34b+48 as \left(-5b^{2}+40b\right)+\left(-6b+48\right).
5b\left(-b+8\right)+6\left(-b+8\right)
Factor out 5b in the first and 6 in the second group.
\left(-b+8\right)\left(5b+6\right)
Factor out common term -b+8 by using distributive property.
4\left(-b+8\right)\left(5b+6\right)
Rewrite the complete factored expression.
-20b^{2}+136b+192=0
Quadratic polynomial can be factored using the transformation ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), where x_{1} and x_{2} are the solutions of the quadratic equation ax^{2}+bx+c=0.
b=\frac{-136±\sqrt{136^{2}-4\left(-20\right)\times 192}}{2\left(-20\right)}
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
b=\frac{-136±\sqrt{18496-4\left(-20\right)\times 192}}{2\left(-20\right)}
Square 136.
b=\frac{-136±\sqrt{18496+80\times 192}}{2\left(-20\right)}
Multiply -4 times -20.
b=\frac{-136±\sqrt{18496+15360}}{2\left(-20\right)}
Multiply 80 times 192.
b=\frac{-136±\sqrt{33856}}{2\left(-20\right)}
Add 18496 to 15360.
b=\frac{-136±184}{2\left(-20\right)}
Take the square root of 33856.
b=\frac{-136±184}{-40}
Multiply 2 times -20.
b=\frac{48}{-40}
Now solve the equation b=\frac{-136±184}{-40} when ± is plus. Add -136 to 184.
b=-\frac{6}{5}
Reduce the fraction \frac{48}{-40} to lowest terms by extracting and canceling out 8.
b=-\frac{320}{-40}
Now solve the equation b=\frac{-136±184}{-40} when ± is minus. Subtract 184 from -136.
b=8
Divide -320 by -40.
-20b^{2}+136b+192=-20\left(b-\left(-\frac{6}{5}\right)\right)\left(b-8\right)
Factor the original expression using ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Substitute -\frac{6}{5} for x_{1} and 8 for x_{2}.
-20b^{2}+136b+192=-20\left(b+\frac{6}{5}\right)\left(b-8\right)
Simplify all the expressions of the form p-\left(-q\right) to p+q.
-20b^{2}+136b+192=-20\times \frac{-5b-6}{-5}\left(b-8\right)
Add \frac{6}{5} to b by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
-20b^{2}+136b+192=4\left(-5b-6\right)\left(b-8\right)
Cancel out 5, the greatest common factor in -20 and 5.
x ^ 2 -\frac{34}{5}x -\frac{48}{5} = 0
Quadratic equations such as this one can be solved by a new direct factoring method that does not require guess work. To use the direct factoring method, the equation must be in the form x^2+Bx+C=0.
r + s = \frac{34}{5} rs = -\frac{48}{5}
Let r and s be the factors for the quadratic equation such that x^2+Bx+C=(x−r)(x−s) where sum of factors (r+s)=−B and the product of factors rs = C
r = \frac{17}{5} - u s = \frac{17}{5} + u
Two numbers r and s sum up to \frac{34}{5} exactly when the average of the two numbers is \frac{1}{2}*\frac{34}{5} = \frac{17}{5}. You can also see that the midpoint of r and s corresponds to the axis of symmetry of the parabola represented by the quadratic equation y=x^2+Bx+C. The values of r and s are equidistant from the center by an unknown quantity u. Express r and s with respect to variable u. <div style='padding: 8px'><img src='https://opalmath.azureedge.net/customsolver/quadraticgraph.png' style='width: 100%;max-width: 700px' /></div>
(\frac{17}{5} - u) (\frac{17}{5} + u) = -\frac{48}{5}
To solve for unknown quantity u, substitute these in the product equation rs = -\frac{48}{5}
\frac{289}{25} - u^2 = -\frac{48}{5}
Simplify by expanding (a -b) (a + b) = a^2 – b^2
-u^2 = -\frac{48}{5}-\frac{289}{25} = -\frac{529}{25}
Simplify the expression by subtracting \frac{289}{25} on both sides
u^2 = \frac{529}{25} u = \pm\sqrt{\frac{529}{25}} = \pm \frac{23}{5}
Simplify the expression by multiplying -1 on both sides and take the square root to obtain the value of unknown variable u
r =\frac{17}{5} - \frac{23}{5} = -1.200 s = \frac{17}{5} + \frac{23}{5} = 8
The factors r and s are the solutions to the quadratic equation. Substitute the value of u to compute the r and s.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}