Factor
-\left(a+10\right)^{2}
Evaluate
-\left(a+10\right)^{2}
Share
Copied to clipboard
-a^{2}-20a-100
Rearrange the polynomial to put it in standard form. Place the terms in order from highest to lowest power.
p+q=-20 pq=-\left(-100\right)=100
Factor the expression by grouping. First, the expression needs to be rewritten as -a^{2}+pa+qa-100. To find p and q, set up a system to be solved.
-1,-100 -2,-50 -4,-25 -5,-20 -10,-10
Since pq is positive, p and q have the same sign. Since p+q is negative, p and q are both negative. List all such integer pairs that give product 100.
-1-100=-101 -2-50=-52 -4-25=-29 -5-20=-25 -10-10=-20
Calculate the sum for each pair.
p=-10 q=-10
The solution is the pair that gives sum -20.
\left(-a^{2}-10a\right)+\left(-10a-100\right)
Rewrite -a^{2}-20a-100 as \left(-a^{2}-10a\right)+\left(-10a-100\right).
-a\left(a+10\right)-10\left(a+10\right)
Factor out -a in the first and -10 in the second group.
\left(a+10\right)\left(-a-10\right)
Factor out common term a+10 by using distributive property.
-a^{2}-20a-100=0
Quadratic polynomial can be factored using the transformation ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), where x_{1} and x_{2} are the solutions of the quadratic equation ax^{2}+bx+c=0.
a=\frac{-\left(-20\right)±\sqrt{\left(-20\right)^{2}-4\left(-1\right)\left(-100\right)}}{2\left(-1\right)}
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
a=\frac{-\left(-20\right)±\sqrt{400-4\left(-1\right)\left(-100\right)}}{2\left(-1\right)}
Square -20.
a=\frac{-\left(-20\right)±\sqrt{400+4\left(-100\right)}}{2\left(-1\right)}
Multiply -4 times -1.
a=\frac{-\left(-20\right)±\sqrt{400-400}}{2\left(-1\right)}
Multiply 4 times -100.
a=\frac{-\left(-20\right)±\sqrt{0}}{2\left(-1\right)}
Add 400 to -400.
a=\frac{-\left(-20\right)±0}{2\left(-1\right)}
Take the square root of 0.
a=\frac{20±0}{2\left(-1\right)}
The opposite of -20 is 20.
a=\frac{20±0}{-2}
Multiply 2 times -1.
-a^{2}-20a-100=-\left(a-\left(-10\right)\right)\left(a-\left(-10\right)\right)
Factor the original expression using ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Substitute -10 for x_{1} and -10 for x_{2}.
-a^{2}-20a-100=-\left(a+10\right)\left(a+10\right)
Simplify all the expressions of the form p-\left(-q\right) to p+q.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}