Solve for a (complex solution)
\left\{\begin{matrix}a=-\frac{2y^{2}+b-6}{y^{2}}\text{, }&y\neq 0\\a\in \mathrm{C}\text{, }&y=0\end{matrix}\right.
Solve for b (complex solution)
\left\{\begin{matrix}\\b=6-2y^{2}-ay^{2}\text{, }&\text{unconditionally}\\b\in \mathrm{C}\text{, }&y=0\end{matrix}\right.
Solve for a
\left\{\begin{matrix}a=-\frac{2y^{2}+b-6}{y^{2}}\text{, }&y\neq 0\\a\in \mathrm{R}\text{, }&y=0\end{matrix}\right.
Solve for b
\left\{\begin{matrix}\\b=6-2y^{2}-ay^{2}\text{, }&\text{unconditionally}\\b\in \mathrm{R}\text{, }&y=0\end{matrix}\right.
Graph
Share
Copied to clipboard
-2y^{3}+12y^{2}+6y=ay^{3}+12y^{2}+by
Use the distributive property to multiply -2y by y^{2}-6y-3.
ay^{3}+12y^{2}+by=-2y^{3}+12y^{2}+6y
Swap sides so that all variable terms are on the left hand side.
ay^{3}+by=-2y^{3}+12y^{2}+6y-12y^{2}
Subtract 12y^{2} from both sides.
ay^{3}+by=-2y^{3}+6y
Combine 12y^{2} and -12y^{2} to get 0.
ay^{3}=-2y^{3}+6y-by
Subtract by from both sides.
y^{3}a=6y-by-2y^{3}
The equation is in standard form.
\frac{y^{3}a}{y^{3}}=\frac{y\left(6-b-2y^{2}\right)}{y^{3}}
Divide both sides by y^{3}.
a=\frac{y\left(6-b-2y^{2}\right)}{y^{3}}
Dividing by y^{3} undoes the multiplication by y^{3}.
a=\frac{6-b-2y^{2}}{y^{2}}
Divide y\left(-2y^{2}+6-b\right) by y^{3}.
-2y^{3}+12y^{2}+6y=ay^{3}+12y^{2}+by
Use the distributive property to multiply -2y by y^{2}-6y-3.
ay^{3}+12y^{2}+by=-2y^{3}+12y^{2}+6y
Swap sides so that all variable terms are on the left hand side.
12y^{2}+by=-2y^{3}+12y^{2}+6y-ay^{3}
Subtract ay^{3} from both sides.
by=-2y^{3}+12y^{2}+6y-ay^{3}-12y^{2}
Subtract 12y^{2} from both sides.
by=-2y^{3}+6y-ay^{3}
Combine 12y^{2} and -12y^{2} to get 0.
yb=6y-2y^{3}-ay^{3}
The equation is in standard form.
\frac{yb}{y}=\frac{y\left(6-2y^{2}-ay^{2}\right)}{y}
Divide both sides by y.
b=\frac{y\left(6-2y^{2}-ay^{2}\right)}{y}
Dividing by y undoes the multiplication by y.
b=6-2y^{2}-ay^{2}
Divide y\left(-2y^{2}+6-ay^{2}\right) by y.
-2y^{3}+12y^{2}+6y=ay^{3}+12y^{2}+by
Use the distributive property to multiply -2y by y^{2}-6y-3.
ay^{3}+12y^{2}+by=-2y^{3}+12y^{2}+6y
Swap sides so that all variable terms are on the left hand side.
ay^{3}+by=-2y^{3}+12y^{2}+6y-12y^{2}
Subtract 12y^{2} from both sides.
ay^{3}+by=-2y^{3}+6y
Combine 12y^{2} and -12y^{2} to get 0.
ay^{3}=-2y^{3}+6y-by
Subtract by from both sides.
y^{3}a=6y-by-2y^{3}
The equation is in standard form.
\frac{y^{3}a}{y^{3}}=\frac{y\left(6-b-2y^{2}\right)}{y^{3}}
Divide both sides by y^{3}.
a=\frac{y\left(6-b-2y^{2}\right)}{y^{3}}
Dividing by y^{3} undoes the multiplication by y^{3}.
a=\frac{6-b-2y^{2}}{y^{2}}
Divide y\left(-2y^{2}+6-b\right) by y^{3}.
-2y^{3}+12y^{2}+6y=ay^{3}+12y^{2}+by
Use the distributive property to multiply -2y by y^{2}-6y-3.
ay^{3}+12y^{2}+by=-2y^{3}+12y^{2}+6y
Swap sides so that all variable terms are on the left hand side.
12y^{2}+by=-2y^{3}+12y^{2}+6y-ay^{3}
Subtract ay^{3} from both sides.
by=-2y^{3}+12y^{2}+6y-ay^{3}-12y^{2}
Subtract 12y^{2} from both sides.
by=-2y^{3}+6y-ay^{3}
Combine 12y^{2} and -12y^{2} to get 0.
yb=6y-2y^{3}-ay^{3}
The equation is in standard form.
\frac{yb}{y}=\frac{y\left(6-2y^{2}-ay^{2}\right)}{y}
Divide both sides by y.
b=\frac{y\left(6-2y^{2}-ay^{2}\right)}{y}
Dividing by y undoes the multiplication by y.
b=6-2y^{2}-ay^{2}
Divide y\left(-2y^{2}+6-ay^{2}\right) by y.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}