Factor
2y\left(5-y\right)\left(y-19\right)
Evaluate
2y\left(5-y\right)\left(y-19\right)
Graph
Share
Copied to clipboard
2\left(-y^{3}+24y^{2}-95y\right)
Factor out 2.
y\left(-y^{2}+24y-95\right)
Consider -y^{3}+24y^{2}-95y. Factor out y.
a+b=24 ab=-\left(-95\right)=95
Consider -y^{2}+24y-95. Factor the expression by grouping. First, the expression needs to be rewritten as -y^{2}+ay+by-95. To find a and b, set up a system to be solved.
1,95 5,19
Since ab is positive, a and b have the same sign. Since a+b is positive, a and b are both positive. List all such integer pairs that give product 95.
1+95=96 5+19=24
Calculate the sum for each pair.
a=19 b=5
The solution is the pair that gives sum 24.
\left(-y^{2}+19y\right)+\left(5y-95\right)
Rewrite -y^{2}+24y-95 as \left(-y^{2}+19y\right)+\left(5y-95\right).
-y\left(y-19\right)+5\left(y-19\right)
Factor out -y in the first and 5 in the second group.
\left(y-19\right)\left(-y+5\right)
Factor out common term y-19 by using distributive property.
2y\left(y-19\right)\left(-y+5\right)
Rewrite the complete factored expression.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}