Solve for y, x
x = \frac{15}{4} = 3\frac{3}{4} = 3.75
y=\frac{1}{2}=0.5
Graph
Share
Copied to clipboard
y=\frac{-1}{-2}
Consider the first equation. Divide both sides by -2.
y=\frac{1}{2}
Fraction \frac{-1}{-2} can be simplified to \frac{1}{2} by removing the negative sign from both the numerator and the denominator.
2x-\frac{1}{2}=7
Consider the second equation. Insert the known values of variables into the equation.
2x=7+\frac{1}{2}
Add \frac{1}{2} to both sides.
2x=\frac{15}{2}
Add 7 and \frac{1}{2} to get \frac{15}{2}.
x=\frac{\frac{15}{2}}{2}
Divide both sides by 2.
x=\frac{15}{2\times 2}
Express \frac{\frac{15}{2}}{2} as a single fraction.
x=\frac{15}{4}
Multiply 2 and 2 to get 4.
y=\frac{1}{2} x=\frac{15}{4}
The system is now solved.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}