Solve for x_c
x_{c}=9-3y_{c}
Solve for y_c
y_{c}=-\frac{x_{c}}{3}+3
Share
Copied to clipboard
-2x_{c}-6y_{c}+18=0
Use the distributive property to multiply -6 by y_{c}-3.
-2x_{c}+18=6y_{c}
Add 6y_{c} to both sides. Anything plus zero gives itself.
-2x_{c}=6y_{c}-18
Subtract 18 from both sides.
\frac{-2x_{c}}{-2}=\frac{6y_{c}-18}{-2}
Divide both sides by -2.
x_{c}=\frac{6y_{c}-18}{-2}
Dividing by -2 undoes the multiplication by -2.
x_{c}=9-3y_{c}
Divide -18+6y_{c} by -2.
-2x_{c}-6y_{c}+18=0
Use the distributive property to multiply -6 by y_{c}-3.
-6y_{c}+18=2x_{c}
Add 2x_{c} to both sides. Anything plus zero gives itself.
-6y_{c}=2x_{c}-18
Subtract 18 from both sides.
\frac{-6y_{c}}{-6}=\frac{2x_{c}-18}{-6}
Divide both sides by -6.
y_{c}=\frac{2x_{c}-18}{-6}
Dividing by -6 undoes the multiplication by -6.
y_{c}=-\frac{x_{c}}{3}+3
Divide -18+2x_{c} by -6.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}