Solve for x
x=\frac{3}{2x_{0}+1}
x_{0}\neq -\frac{1}{2}
Solve for x_0
x_{0}=-\frac{1}{2}+\frac{3}{2x}
x\neq 0
Graph
Share
Copied to clipboard
-2x_{0}x+3=x
Variable x cannot be equal to 0 since division by zero is not defined. Multiply both sides of the equation by x.
-2x_{0}x+3-x=0
Subtract x from both sides.
-2x_{0}x-x=-3
Subtract 3 from both sides. Anything subtracted from zero gives its negation.
\left(-2x_{0}-1\right)x=-3
Combine all terms containing x.
\frac{\left(-2x_{0}-1\right)x}{-2x_{0}-1}=-\frac{3}{-2x_{0}-1}
Divide both sides by -2x_{0}-1.
x=-\frac{3}{-2x_{0}-1}
Dividing by -2x_{0}-1 undoes the multiplication by -2x_{0}-1.
x=\frac{3}{2x_{0}+1}
Divide -3 by -2x_{0}-1.
x=\frac{3}{2x_{0}+1}\text{, }x\neq 0
Variable x cannot be equal to 0.
-2x_{0}x+3=x
Multiply both sides of the equation by x.
-2x_{0}x=x-3
Subtract 3 from both sides.
\left(-2x\right)x_{0}=x-3
The equation is in standard form.
\frac{\left(-2x\right)x_{0}}{-2x}=\frac{x-3}{-2x}
Divide both sides by -2x.
x_{0}=\frac{x-3}{-2x}
Dividing by -2x undoes the multiplication by -2x.
x_{0}=-\frac{1}{2}+\frac{3}{2x}
Divide x-3 by -2x.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}