Solve for x
x=-\frac{3iy}{2}+\left(-\frac{1}{2}-\frac{1}{2}i\right)
Solve for y
y=\frac{2ix}{3}+\left(-\frac{1}{3}+\frac{1}{3}i\right)
Share
Copied to clipboard
-2x-i=1+3iy
Multiply 3 and i to get 3i.
-2x=1+3iy+i
Add i to both sides.
-2x=3iy+\left(1+i\right)
The equation is in standard form.
\frac{-2x}{-2}=\frac{3iy+\left(1+i\right)}{-2}
Divide both sides by -2.
x=\frac{3iy+\left(1+i\right)}{-2}
Dividing by -2 undoes the multiplication by -2.
x=-\frac{3iy}{2}+\left(-\frac{1}{2}-\frac{1}{2}i\right)
Divide 1+i+3iy by -2.
-2x-i=1+3iy
Multiply 3 and i to get 3i.
1+3iy=-2x-i
Swap sides so that all variable terms are on the left hand side.
3iy=-2x-i-1
Subtract 1 from both sides.
3iy=-1-i-2x
The equation is in standard form.
\frac{3iy}{3i}=\frac{-1-i-2x}{3i}
Divide both sides by 3i.
y=\frac{-1-i-2x}{3i}
Dividing by 3i undoes the multiplication by 3i.
y=\frac{2ix}{3}+\left(-\frac{1}{3}+\frac{1}{3}i\right)
Divide -2x+\left(-1-i\right) by 3i.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}