Skip to main content
Solve for x (complex solution)
Tick mark Image
Graph

Similar Problems from Web Search

Share

-2x-10-x^{2}=0
Subtract x^{2} from both sides.
-x^{2}-2x-10=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-\left(-2\right)±\sqrt{\left(-2\right)^{2}-4\left(-1\right)\left(-10\right)}}{2\left(-1\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -1 for a, -2 for b, and -10 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-2\right)±\sqrt{4-4\left(-1\right)\left(-10\right)}}{2\left(-1\right)}
Square -2.
x=\frac{-\left(-2\right)±\sqrt{4+4\left(-10\right)}}{2\left(-1\right)}
Multiply -4 times -1.
x=\frac{-\left(-2\right)±\sqrt{4-40}}{2\left(-1\right)}
Multiply 4 times -10.
x=\frac{-\left(-2\right)±\sqrt{-36}}{2\left(-1\right)}
Add 4 to -40.
x=\frac{-\left(-2\right)±6i}{2\left(-1\right)}
Take the square root of -36.
x=\frac{2±6i}{2\left(-1\right)}
The opposite of -2 is 2.
x=\frac{2±6i}{-2}
Multiply 2 times -1.
x=\frac{2+6i}{-2}
Now solve the equation x=\frac{2±6i}{-2} when ± is plus. Add 2 to 6i.
x=-1-3i
Divide 2+6i by -2.
x=\frac{2-6i}{-2}
Now solve the equation x=\frac{2±6i}{-2} when ± is minus. Subtract 6i from 2.
x=-1+3i
Divide 2-6i by -2.
x=-1-3i x=-1+3i
The equation is now solved.
-2x-10-x^{2}=0
Subtract x^{2} from both sides.
-2x-x^{2}=10
Add 10 to both sides. Anything plus zero gives itself.
-x^{2}-2x=10
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
\frac{-x^{2}-2x}{-1}=\frac{10}{-1}
Divide both sides by -1.
x^{2}+\left(-\frac{2}{-1}\right)x=\frac{10}{-1}
Dividing by -1 undoes the multiplication by -1.
x^{2}+2x=\frac{10}{-1}
Divide -2 by -1.
x^{2}+2x=-10
Divide 10 by -1.
x^{2}+2x+1^{2}=-10+1^{2}
Divide 2, the coefficient of the x term, by 2 to get 1. Then add the square of 1 to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}+2x+1=-10+1
Square 1.
x^{2}+2x+1=-9
Add -10 to 1.
\left(x+1\right)^{2}=-9
Factor x^{2}+2x+1. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+1\right)^{2}}=\sqrt{-9}
Take the square root of both sides of the equation.
x+1=3i x+1=-3i
Simplify.
x=-1+3i x=-1-3i
Subtract 1 from both sides of the equation.