Evaluate
2x-6y+\pi
Expand
2x-6y+\pi
Share
Copied to clipboard
-2x-\left(5y+3x-7x-\left(-y\right)-\pi \right)
To find the opposite of 7x-y+\pi , find the opposite of each term.
-2x-\left(5y+3x-7x+y-\pi \right)
The opposite of -y is y.
-2x-\left(5y-4x+y-\pi \right)
Combine 3x and -7x to get -4x.
-2x-\left(6y-4x-\pi \right)
Combine 5y and y to get 6y.
-2x-6y-\left(-4x\right)-\left(-\pi \right)
To find the opposite of 6y-4x-\pi , find the opposite of each term.
-2x-6y+4x-\left(-\pi \right)
The opposite of -4x is 4x.
2x-6y-\left(-\pi \right)
Combine -2x and 4x to get 2x.
2x-6y+\pi
The opposite of -\pi is \pi .
-2x-\left(5y+3x-7x-\left(-y\right)-\pi \right)
To find the opposite of 7x-y+\pi , find the opposite of each term.
-2x-\left(5y+3x-7x+y-\pi \right)
The opposite of -y is y.
-2x-\left(5y-4x+y-\pi \right)
Combine 3x and -7x to get -4x.
-2x-\left(6y-4x-\pi \right)
Combine 5y and y to get 6y.
-2x-6y-\left(-4x\right)-\left(-\pi \right)
To find the opposite of 6y-4x-\pi , find the opposite of each term.
-2x-6y+4x-\left(-\pi \right)
The opposite of -4x is 4x.
2x-6y-\left(-\pi \right)
Combine -2x and 4x to get 2x.
2x-6y+\pi
The opposite of -\pi is \pi .
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}