Skip to main content
Solve for x (complex solution)
Tick mark Image
Graph

Similar Problems from Web Search

Share

-2x^{2}=5
Add 5 to both sides. Anything plus zero gives itself.
x^{2}=-\frac{5}{2}
Divide both sides by -2.
x=\frac{\sqrt{10}i}{2} x=-\frac{\sqrt{10}i}{2}
The equation is now solved.
-2x^{2}-5=0
Quadratic equations like this one, with an x^{2} term but no x term, can still be solved using the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}, once they are put in standard form: ax^{2}+bx+c=0.
x=\frac{0±\sqrt{0^{2}-4\left(-2\right)\left(-5\right)}}{2\left(-2\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -2 for a, 0 for b, and -5 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{0±\sqrt{-4\left(-2\right)\left(-5\right)}}{2\left(-2\right)}
Square 0.
x=\frac{0±\sqrt{8\left(-5\right)}}{2\left(-2\right)}
Multiply -4 times -2.
x=\frac{0±\sqrt{-40}}{2\left(-2\right)}
Multiply 8 times -5.
x=\frac{0±2\sqrt{10}i}{2\left(-2\right)}
Take the square root of -40.
x=\frac{0±2\sqrt{10}i}{-4}
Multiply 2 times -2.
x=-\frac{\sqrt{10}i}{2}
Now solve the equation x=\frac{0±2\sqrt{10}i}{-4} when ± is plus.
x=\frac{\sqrt{10}i}{2}
Now solve the equation x=\frac{0±2\sqrt{10}i}{-4} when ± is minus.
x=-\frac{\sqrt{10}i}{2} x=\frac{\sqrt{10}i}{2}
The equation is now solved.