Skip to main content
Solve for x (complex solution)
Tick mark Image
Graph

Similar Problems from Web Search

Share

-2x^{2}-3x-2=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-\left(-3\right)±\sqrt{\left(-3\right)^{2}-4\left(-2\right)\left(-2\right)}}{2\left(-2\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -2 for a, -3 for b, and -2 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-3\right)±\sqrt{9-4\left(-2\right)\left(-2\right)}}{2\left(-2\right)}
Square -3.
x=\frac{-\left(-3\right)±\sqrt{9+8\left(-2\right)}}{2\left(-2\right)}
Multiply -4 times -2.
x=\frac{-\left(-3\right)±\sqrt{9-16}}{2\left(-2\right)}
Multiply 8 times -2.
x=\frac{-\left(-3\right)±\sqrt{-7}}{2\left(-2\right)}
Add 9 to -16.
x=\frac{-\left(-3\right)±\sqrt{7}i}{2\left(-2\right)}
Take the square root of -7.
x=\frac{3±\sqrt{7}i}{2\left(-2\right)}
The opposite of -3 is 3.
x=\frac{3±\sqrt{7}i}{-4}
Multiply 2 times -2.
x=\frac{3+\sqrt{7}i}{-4}
Now solve the equation x=\frac{3±\sqrt{7}i}{-4} when ± is plus. Add 3 to i\sqrt{7}.
x=\frac{-\sqrt{7}i-3}{4}
Divide 3+i\sqrt{7} by -4.
x=\frac{-\sqrt{7}i+3}{-4}
Now solve the equation x=\frac{3±\sqrt{7}i}{-4} when ± is minus. Subtract i\sqrt{7} from 3.
x=\frac{-3+\sqrt{7}i}{4}
Divide 3-i\sqrt{7} by -4.
x=\frac{-\sqrt{7}i-3}{4} x=\frac{-3+\sqrt{7}i}{4}
The equation is now solved.
-2x^{2}-3x-2=0
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
-2x^{2}-3x-2-\left(-2\right)=-\left(-2\right)
Add 2 to both sides of the equation.
-2x^{2}-3x=-\left(-2\right)
Subtracting -2 from itself leaves 0.
-2x^{2}-3x=2
Subtract -2 from 0.
\frac{-2x^{2}-3x}{-2}=\frac{2}{-2}
Divide both sides by -2.
x^{2}+\left(-\frac{3}{-2}\right)x=\frac{2}{-2}
Dividing by -2 undoes the multiplication by -2.
x^{2}+\frac{3}{2}x=\frac{2}{-2}
Divide -3 by -2.
x^{2}+\frac{3}{2}x=-1
Divide 2 by -2.
x^{2}+\frac{3}{2}x+\left(\frac{3}{4}\right)^{2}=-1+\left(\frac{3}{4}\right)^{2}
Divide \frac{3}{2}, the coefficient of the x term, by 2 to get \frac{3}{4}. Then add the square of \frac{3}{4} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}+\frac{3}{2}x+\frac{9}{16}=-1+\frac{9}{16}
Square \frac{3}{4} by squaring both the numerator and the denominator of the fraction.
x^{2}+\frac{3}{2}x+\frac{9}{16}=-\frac{7}{16}
Add -1 to \frac{9}{16}.
\left(x+\frac{3}{4}\right)^{2}=-\frac{7}{16}
Factor x^{2}+\frac{3}{2}x+\frac{9}{16}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+\frac{3}{4}\right)^{2}}=\sqrt{-\frac{7}{16}}
Take the square root of both sides of the equation.
x+\frac{3}{4}=\frac{\sqrt{7}i}{4} x+\frac{3}{4}=-\frac{\sqrt{7}i}{4}
Simplify.
x=\frac{-3+\sqrt{7}i}{4} x=\frac{-\sqrt{7}i-3}{4}
Subtract \frac{3}{4} from both sides of the equation.
x ^ 2 +\frac{3}{2}x +1 = 0
Quadratic equations such as this one can be solved by a new direct factoring method that does not require guess work. To use the direct factoring method, the equation must be in the form x^2+Bx+C=0.
r + s = -\frac{3}{2} rs = 1
Let r and s be the factors for the quadratic equation such that x^2+Bx+C=(x−r)(x−s) where sum of factors (r+s)=−B and the product of factors rs = C
r = -\frac{3}{4} - u s = -\frac{3}{4} + u
Two numbers r and s sum up to -\frac{3}{2} exactly when the average of the two numbers is \frac{1}{2}*-\frac{3}{2} = -\frac{3}{4}. You can also see that the midpoint of r and s corresponds to the axis of symmetry of the parabola represented by the quadratic equation y=x^2+Bx+C. The values of r and s are equidistant from the center by an unknown quantity u. Express r and s with respect to variable u. <div style='padding: 8px'><img src='https://opalmath.azureedge.net/customsolver/quadraticgraph.png' style='width: 100%;max-width: 700px' /></div>
(-\frac{3}{4} - u) (-\frac{3}{4} + u) = 1
To solve for unknown quantity u, substitute these in the product equation rs = 1
\frac{9}{16} - u^2 = 1
Simplify by expanding (a -b) (a + b) = a^2 – b^2
-u^2 = 1-\frac{9}{16} = \frac{7}{16}
Simplify the expression by subtracting \frac{9}{16} on both sides
u^2 = -\frac{7}{16} u = \pm\sqrt{-\frac{7}{16}} = \pm \frac{\sqrt{7}}{4}i
Simplify the expression by multiplying -1 on both sides and take the square root to obtain the value of unknown variable u
r =-\frac{3}{4} - \frac{\sqrt{7}}{4}i = -0.750 - 0.661i s = -\frac{3}{4} + \frac{\sqrt{7}}{4}i = -0.750 + 0.661i
The factors r and s are the solutions to the quadratic equation. Substitute the value of u to compute the r and s.