Solve for x (complex solution)
x=\frac{-1+\sqrt{23}i}{2}\approx -0.5+2.397915762i
x=\frac{-\sqrt{23}i-1}{2}\approx -0.5-2.397915762i
Graph
Share
Copied to clipboard
-2x^{2}-2x-12=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-\left(-2\right)±\sqrt{\left(-2\right)^{2}-4\left(-2\right)\left(-12\right)}}{2\left(-2\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -2 for a, -2 for b, and -12 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-2\right)±\sqrt{4-4\left(-2\right)\left(-12\right)}}{2\left(-2\right)}
Square -2.
x=\frac{-\left(-2\right)±\sqrt{4+8\left(-12\right)}}{2\left(-2\right)}
Multiply -4 times -2.
x=\frac{-\left(-2\right)±\sqrt{4-96}}{2\left(-2\right)}
Multiply 8 times -12.
x=\frac{-\left(-2\right)±\sqrt{-92}}{2\left(-2\right)}
Add 4 to -96.
x=\frac{-\left(-2\right)±2\sqrt{23}i}{2\left(-2\right)}
Take the square root of -92.
x=\frac{2±2\sqrt{23}i}{2\left(-2\right)}
The opposite of -2 is 2.
x=\frac{2±2\sqrt{23}i}{-4}
Multiply 2 times -2.
x=\frac{2+2\sqrt{23}i}{-4}
Now solve the equation x=\frac{2±2\sqrt{23}i}{-4} when ± is plus. Add 2 to 2i\sqrt{23}.
x=\frac{-\sqrt{23}i-1}{2}
Divide 2+2i\sqrt{23} by -4.
x=\frac{-2\sqrt{23}i+2}{-4}
Now solve the equation x=\frac{2±2\sqrt{23}i}{-4} when ± is minus. Subtract 2i\sqrt{23} from 2.
x=\frac{-1+\sqrt{23}i}{2}
Divide 2-2i\sqrt{23} by -4.
x=\frac{-\sqrt{23}i-1}{2} x=\frac{-1+\sqrt{23}i}{2}
The equation is now solved.
-2x^{2}-2x-12=0
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
-2x^{2}-2x-12-\left(-12\right)=-\left(-12\right)
Add 12 to both sides of the equation.
-2x^{2}-2x=-\left(-12\right)
Subtracting -12 from itself leaves 0.
-2x^{2}-2x=12
Subtract -12 from 0.
\frac{-2x^{2}-2x}{-2}=\frac{12}{-2}
Divide both sides by -2.
x^{2}+\left(-\frac{2}{-2}\right)x=\frac{12}{-2}
Dividing by -2 undoes the multiplication by -2.
x^{2}+x=\frac{12}{-2}
Divide -2 by -2.
x^{2}+x=-6
Divide 12 by -2.
x^{2}+x+\left(\frac{1}{2}\right)^{2}=-6+\left(\frac{1}{2}\right)^{2}
Divide 1, the coefficient of the x term, by 2 to get \frac{1}{2}. Then add the square of \frac{1}{2} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}+x+\frac{1}{4}=-6+\frac{1}{4}
Square \frac{1}{2} by squaring both the numerator and the denominator of the fraction.
x^{2}+x+\frac{1}{4}=-\frac{23}{4}
Add -6 to \frac{1}{4}.
\left(x+\frac{1}{2}\right)^{2}=-\frac{23}{4}
Factor x^{2}+x+\frac{1}{4}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+\frac{1}{2}\right)^{2}}=\sqrt{-\frac{23}{4}}
Take the square root of both sides of the equation.
x+\frac{1}{2}=\frac{\sqrt{23}i}{2} x+\frac{1}{2}=-\frac{\sqrt{23}i}{2}
Simplify.
x=\frac{-1+\sqrt{23}i}{2} x=\frac{-\sqrt{23}i-1}{2}
Subtract \frac{1}{2} from both sides of the equation.
x ^ 2 +1x +6 = 0
Quadratic equations such as this one can be solved by a new direct factoring method that does not require guess work. To use the direct factoring method, the equation must be in the form x^2+Bx+C=0.
r + s = -1 rs = 6
Let r and s be the factors for the quadratic equation such that x^2+Bx+C=(x−r)(x−s) where sum of factors (r+s)=−B and the product of factors rs = C
r = -\frac{1}{2} - u s = -\frac{1}{2} + u
Two numbers r and s sum up to -1 exactly when the average of the two numbers is \frac{1}{2}*-1 = -\frac{1}{2}. You can also see that the midpoint of r and s corresponds to the axis of symmetry of the parabola represented by the quadratic equation y=x^2+Bx+C. The values of r and s are equidistant from the center by an unknown quantity u. Express r and s with respect to variable u. <div style='padding: 8px'><img src='https://opalmath.azureedge.net/customsolver/quadraticgraph.png' style='width: 100%;max-width: 700px' /></div>
(-\frac{1}{2} - u) (-\frac{1}{2} + u) = 6
To solve for unknown quantity u, substitute these in the product equation rs = 6
\frac{1}{4} - u^2 = 6
Simplify by expanding (a -b) (a + b) = a^2 – b^2
-u^2 = 6-\frac{1}{4} = \frac{23}{4}
Simplify the expression by subtracting \frac{1}{4} on both sides
u^2 = -\frac{23}{4} u = \pm\sqrt{-\frac{23}{4}} = \pm \frac{\sqrt{23}}{2}i
Simplify the expression by multiplying -1 on both sides and take the square root to obtain the value of unknown variable u
r =-\frac{1}{2} - \frac{\sqrt{23}}{2}i = -0.500 - 2.398i s = -\frac{1}{2} + \frac{\sqrt{23}}{2}i = -0.500 + 2.398i
The factors r and s are the solutions to the quadratic equation. Substitute the value of u to compute the r and s.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}