Skip to main content
Solve for x (complex solution)
Tick mark Image
Graph

Similar Problems from Web Search

Share

-2x^{2}-2x=7
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
-2x^{2}-2x-7=7-7
Subtract 7 from both sides of the equation.
-2x^{2}-2x-7=0
Subtracting 7 from itself leaves 0.
x=\frac{-\left(-2\right)±\sqrt{\left(-2\right)^{2}-4\left(-2\right)\left(-7\right)}}{2\left(-2\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -2 for a, -2 for b, and -7 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-2\right)±\sqrt{4-4\left(-2\right)\left(-7\right)}}{2\left(-2\right)}
Square -2.
x=\frac{-\left(-2\right)±\sqrt{4+8\left(-7\right)}}{2\left(-2\right)}
Multiply -4 times -2.
x=\frac{-\left(-2\right)±\sqrt{4-56}}{2\left(-2\right)}
Multiply 8 times -7.
x=\frac{-\left(-2\right)±\sqrt{-52}}{2\left(-2\right)}
Add 4 to -56.
x=\frac{-\left(-2\right)±2\sqrt{13}i}{2\left(-2\right)}
Take the square root of -52.
x=\frac{2±2\sqrt{13}i}{2\left(-2\right)}
The opposite of -2 is 2.
x=\frac{2±2\sqrt{13}i}{-4}
Multiply 2 times -2.
x=\frac{2+2\sqrt{13}i}{-4}
Now solve the equation x=\frac{2±2\sqrt{13}i}{-4} when ± is plus. Add 2 to 2i\sqrt{13}.
x=\frac{-\sqrt{13}i-1}{2}
Divide 2+2i\sqrt{13} by -4.
x=\frac{-2\sqrt{13}i+2}{-4}
Now solve the equation x=\frac{2±2\sqrt{13}i}{-4} when ± is minus. Subtract 2i\sqrt{13} from 2.
x=\frac{-1+\sqrt{13}i}{2}
Divide 2-2i\sqrt{13} by -4.
x=\frac{-\sqrt{13}i-1}{2} x=\frac{-1+\sqrt{13}i}{2}
The equation is now solved.
-2x^{2}-2x=7
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
\frac{-2x^{2}-2x}{-2}=\frac{7}{-2}
Divide both sides by -2.
x^{2}+\left(-\frac{2}{-2}\right)x=\frac{7}{-2}
Dividing by -2 undoes the multiplication by -2.
x^{2}+x=\frac{7}{-2}
Divide -2 by -2.
x^{2}+x=-\frac{7}{2}
Divide 7 by -2.
x^{2}+x+\left(\frac{1}{2}\right)^{2}=-\frac{7}{2}+\left(\frac{1}{2}\right)^{2}
Divide 1, the coefficient of the x term, by 2 to get \frac{1}{2}. Then add the square of \frac{1}{2} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}+x+\frac{1}{4}=-\frac{7}{2}+\frac{1}{4}
Square \frac{1}{2} by squaring both the numerator and the denominator of the fraction.
x^{2}+x+\frac{1}{4}=-\frac{13}{4}
Add -\frac{7}{2} to \frac{1}{4} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(x+\frac{1}{2}\right)^{2}=-\frac{13}{4}
Factor x^{2}+x+\frac{1}{4}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+\frac{1}{2}\right)^{2}}=\sqrt{-\frac{13}{4}}
Take the square root of both sides of the equation.
x+\frac{1}{2}=\frac{\sqrt{13}i}{2} x+\frac{1}{2}=-\frac{\sqrt{13}i}{2}
Simplify.
x=\frac{-1+\sqrt{13}i}{2} x=\frac{-\sqrt{13}i-1}{2}
Subtract \frac{1}{2} from both sides of the equation.