Skip to main content
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

-2x^{2}-\frac{5476}{275}x+\frac{19}{11}=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-\left(-\frac{5476}{275}\right)±\sqrt{\left(-\frac{5476}{275}\right)^{2}-4\left(-2\right)\times \frac{19}{11}}}{2\left(-2\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -2 for a, -\frac{5476}{275} for b, and \frac{19}{11} for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-\frac{5476}{275}\right)±\sqrt{\frac{29986576}{75625}-4\left(-2\right)\times \frac{19}{11}}}{2\left(-2\right)}
Square -\frac{5476}{275} by squaring both the numerator and the denominator of the fraction.
x=\frac{-\left(-\frac{5476}{275}\right)±\sqrt{\frac{29986576}{75625}+8\times \frac{19}{11}}}{2\left(-2\right)}
Multiply -4 times -2.
x=\frac{-\left(-\frac{5476}{275}\right)±\sqrt{\frac{29986576}{75625}+\frac{152}{11}}}{2\left(-2\right)}
Multiply 8 times \frac{19}{11}.
x=\frac{-\left(-\frac{5476}{275}\right)±\sqrt{\frac{31031576}{75625}}}{2\left(-2\right)}
Add \frac{29986576}{75625} to \frac{152}{11} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
x=\frac{-\left(-\frac{5476}{275}\right)±\frac{2\sqrt{7757894}}{275}}{2\left(-2\right)}
Take the square root of \frac{31031576}{75625}.
x=\frac{\frac{5476}{275}±\frac{2\sqrt{7757894}}{275}}{2\left(-2\right)}
The opposite of -\frac{5476}{275} is \frac{5476}{275}.
x=\frac{\frac{5476}{275}±\frac{2\sqrt{7757894}}{275}}{-4}
Multiply 2 times -2.
x=\frac{2\sqrt{7757894}+5476}{-4\times 275}
Now solve the equation x=\frac{\frac{5476}{275}±\frac{2\sqrt{7757894}}{275}}{-4} when ± is plus. Add \frac{5476}{275} to \frac{2\sqrt{7757894}}{275}.
x=-\frac{\sqrt{7757894}}{550}-\frac{1369}{275}
Divide \frac{5476+2\sqrt{7757894}}{275} by -4.
x=\frac{5476-2\sqrt{7757894}}{-4\times 275}
Now solve the equation x=\frac{\frac{5476}{275}±\frac{2\sqrt{7757894}}{275}}{-4} when ± is minus. Subtract \frac{2\sqrt{7757894}}{275} from \frac{5476}{275}.
x=\frac{\sqrt{7757894}}{550}-\frac{1369}{275}
Divide \frac{5476-2\sqrt{7757894}}{275} by -4.
x=-\frac{\sqrt{7757894}}{550}-\frac{1369}{275} x=\frac{\sqrt{7757894}}{550}-\frac{1369}{275}
The equation is now solved.
-2x^{2}-\frac{5476}{275}x+\frac{19}{11}=0
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
-2x^{2}-\frac{5476}{275}x+\frac{19}{11}-\frac{19}{11}=-\frac{19}{11}
Subtract \frac{19}{11} from both sides of the equation.
-2x^{2}-\frac{5476}{275}x=-\frac{19}{11}
Subtracting \frac{19}{11} from itself leaves 0.
\frac{-2x^{2}-\frac{5476}{275}x}{-2}=-\frac{\frac{19}{11}}{-2}
Divide both sides by -2.
x^{2}+\left(-\frac{\frac{5476}{275}}{-2}\right)x=-\frac{\frac{19}{11}}{-2}
Dividing by -2 undoes the multiplication by -2.
x^{2}+\frac{2738}{275}x=-\frac{\frac{19}{11}}{-2}
Divide -\frac{5476}{275} by -2.
x^{2}+\frac{2738}{275}x=\frac{19}{22}
Divide -\frac{19}{11} by -2.
x^{2}+\frac{2738}{275}x+\left(\frac{1369}{275}\right)^{2}=\frac{19}{22}+\left(\frac{1369}{275}\right)^{2}
Divide \frac{2738}{275}, the coefficient of the x term, by 2 to get \frac{1369}{275}. Then add the square of \frac{1369}{275} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}+\frac{2738}{275}x+\frac{1874161}{75625}=\frac{19}{22}+\frac{1874161}{75625}
Square \frac{1369}{275} by squaring both the numerator and the denominator of the fraction.
x^{2}+\frac{2738}{275}x+\frac{1874161}{75625}=\frac{3878947}{151250}
Add \frac{19}{22} to \frac{1874161}{75625} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(x+\frac{1369}{275}\right)^{2}=\frac{3878947}{151250}
Factor x^{2}+\frac{2738}{275}x+\frac{1874161}{75625}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+\frac{1369}{275}\right)^{2}}=\sqrt{\frac{3878947}{151250}}
Take the square root of both sides of the equation.
x+\frac{1369}{275}=\frac{\sqrt{7757894}}{550} x+\frac{1369}{275}=-\frac{\sqrt{7757894}}{550}
Simplify.
x=\frac{\sqrt{7757894}}{550}-\frac{1369}{275} x=-\frac{\sqrt{7757894}}{550}-\frac{1369}{275}
Subtract \frac{1369}{275} from both sides of the equation.