Skip to main content
Solve for x (complex solution)
Tick mark Image
Graph

Similar Problems from Web Search

Share

-2x^{2}-3x=2
Subtract 3x from both sides.
-2x^{2}-3x-2=0
Subtract 2 from both sides.
x=\frac{-\left(-3\right)±\sqrt{\left(-3\right)^{2}-4\left(-2\right)\left(-2\right)}}{2\left(-2\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -2 for a, -3 for b, and -2 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-3\right)±\sqrt{9-4\left(-2\right)\left(-2\right)}}{2\left(-2\right)}
Square -3.
x=\frac{-\left(-3\right)±\sqrt{9+8\left(-2\right)}}{2\left(-2\right)}
Multiply -4 times -2.
x=\frac{-\left(-3\right)±\sqrt{9-16}}{2\left(-2\right)}
Multiply 8 times -2.
x=\frac{-\left(-3\right)±\sqrt{-7}}{2\left(-2\right)}
Add 9 to -16.
x=\frac{-\left(-3\right)±\sqrt{7}i}{2\left(-2\right)}
Take the square root of -7.
x=\frac{3±\sqrt{7}i}{2\left(-2\right)}
The opposite of -3 is 3.
x=\frac{3±\sqrt{7}i}{-4}
Multiply 2 times -2.
x=\frac{3+\sqrt{7}i}{-4}
Now solve the equation x=\frac{3±\sqrt{7}i}{-4} when ± is plus. Add 3 to i\sqrt{7}.
x=\frac{-\sqrt{7}i-3}{4}
Divide 3+i\sqrt{7} by -4.
x=\frac{-\sqrt{7}i+3}{-4}
Now solve the equation x=\frac{3±\sqrt{7}i}{-4} when ± is minus. Subtract i\sqrt{7} from 3.
x=\frac{-3+\sqrt{7}i}{4}
Divide 3-i\sqrt{7} by -4.
x=\frac{-\sqrt{7}i-3}{4} x=\frac{-3+\sqrt{7}i}{4}
The equation is now solved.
-2x^{2}-3x=2
Subtract 3x from both sides.
\frac{-2x^{2}-3x}{-2}=\frac{2}{-2}
Divide both sides by -2.
x^{2}+\left(-\frac{3}{-2}\right)x=\frac{2}{-2}
Dividing by -2 undoes the multiplication by -2.
x^{2}+\frac{3}{2}x=\frac{2}{-2}
Divide -3 by -2.
x^{2}+\frac{3}{2}x=-1
Divide 2 by -2.
x^{2}+\frac{3}{2}x+\left(\frac{3}{4}\right)^{2}=-1+\left(\frac{3}{4}\right)^{2}
Divide \frac{3}{2}, the coefficient of the x term, by 2 to get \frac{3}{4}. Then add the square of \frac{3}{4} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}+\frac{3}{2}x+\frac{9}{16}=-1+\frac{9}{16}
Square \frac{3}{4} by squaring both the numerator and the denominator of the fraction.
x^{2}+\frac{3}{2}x+\frac{9}{16}=-\frac{7}{16}
Add -1 to \frac{9}{16}.
\left(x+\frac{3}{4}\right)^{2}=-\frac{7}{16}
Factor x^{2}+\frac{3}{2}x+\frac{9}{16}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+\frac{3}{4}\right)^{2}}=\sqrt{-\frac{7}{16}}
Take the square root of both sides of the equation.
x+\frac{3}{4}=\frac{\sqrt{7}i}{4} x+\frac{3}{4}=-\frac{\sqrt{7}i}{4}
Simplify.
x=\frac{-3+\sqrt{7}i}{4} x=\frac{-\sqrt{7}i-3}{4}
Subtract \frac{3}{4} from both sides of the equation.