Solve for x (complex solution)
x=\frac{-\sqrt{7}i-3}{4}\approx -0.75-0.661437828i
x=\frac{-3+\sqrt{7}i}{4}\approx -0.75+0.661437828i
Graph
Share
Copied to clipboard
-2x^{2}-3x=2
Subtract 3x from both sides.
-2x^{2}-3x-2=0
Subtract 2 from both sides.
x=\frac{-\left(-3\right)±\sqrt{\left(-3\right)^{2}-4\left(-2\right)\left(-2\right)}}{2\left(-2\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -2 for a, -3 for b, and -2 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-3\right)±\sqrt{9-4\left(-2\right)\left(-2\right)}}{2\left(-2\right)}
Square -3.
x=\frac{-\left(-3\right)±\sqrt{9+8\left(-2\right)}}{2\left(-2\right)}
Multiply -4 times -2.
x=\frac{-\left(-3\right)±\sqrt{9-16}}{2\left(-2\right)}
Multiply 8 times -2.
x=\frac{-\left(-3\right)±\sqrt{-7}}{2\left(-2\right)}
Add 9 to -16.
x=\frac{-\left(-3\right)±\sqrt{7}i}{2\left(-2\right)}
Take the square root of -7.
x=\frac{3±\sqrt{7}i}{2\left(-2\right)}
The opposite of -3 is 3.
x=\frac{3±\sqrt{7}i}{-4}
Multiply 2 times -2.
x=\frac{3+\sqrt{7}i}{-4}
Now solve the equation x=\frac{3±\sqrt{7}i}{-4} when ± is plus. Add 3 to i\sqrt{7}.
x=\frac{-\sqrt{7}i-3}{4}
Divide 3+i\sqrt{7} by -4.
x=\frac{-\sqrt{7}i+3}{-4}
Now solve the equation x=\frac{3±\sqrt{7}i}{-4} when ± is minus. Subtract i\sqrt{7} from 3.
x=\frac{-3+\sqrt{7}i}{4}
Divide 3-i\sqrt{7} by -4.
x=\frac{-\sqrt{7}i-3}{4} x=\frac{-3+\sqrt{7}i}{4}
The equation is now solved.
-2x^{2}-3x=2
Subtract 3x from both sides.
\frac{-2x^{2}-3x}{-2}=\frac{2}{-2}
Divide both sides by -2.
x^{2}+\left(-\frac{3}{-2}\right)x=\frac{2}{-2}
Dividing by -2 undoes the multiplication by -2.
x^{2}+\frac{3}{2}x=\frac{2}{-2}
Divide -3 by -2.
x^{2}+\frac{3}{2}x=-1
Divide 2 by -2.
x^{2}+\frac{3}{2}x+\left(\frac{3}{4}\right)^{2}=-1+\left(\frac{3}{4}\right)^{2}
Divide \frac{3}{2}, the coefficient of the x term, by 2 to get \frac{3}{4}. Then add the square of \frac{3}{4} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}+\frac{3}{2}x+\frac{9}{16}=-1+\frac{9}{16}
Square \frac{3}{4} by squaring both the numerator and the denominator of the fraction.
x^{2}+\frac{3}{2}x+\frac{9}{16}=-\frac{7}{16}
Add -1 to \frac{9}{16}.
\left(x+\frac{3}{4}\right)^{2}=-\frac{7}{16}
Factor x^{2}+\frac{3}{2}x+\frac{9}{16}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+\frac{3}{4}\right)^{2}}=\sqrt{-\frac{7}{16}}
Take the square root of both sides of the equation.
x+\frac{3}{4}=\frac{\sqrt{7}i}{4} x+\frac{3}{4}=-\frac{\sqrt{7}i}{4}
Simplify.
x=\frac{-3+\sqrt{7}i}{4} x=\frac{-\sqrt{7}i-3}{4}
Subtract \frac{3}{4} from both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}