Skip to main content
Solve for x (complex solution)
Tick mark Image
Graph

Similar Problems from Web Search

Share

-x^{2}-3x-5=0
Combine -2x^{2} and x^{2} to get -x^{2}.
x=\frac{-\left(-3\right)±\sqrt{\left(-3\right)^{2}-4\left(-1\right)\left(-5\right)}}{2\left(-1\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -1 for a, -3 for b, and -5 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-3\right)±\sqrt{9-4\left(-1\right)\left(-5\right)}}{2\left(-1\right)}
Square -3.
x=\frac{-\left(-3\right)±\sqrt{9+4\left(-5\right)}}{2\left(-1\right)}
Multiply -4 times -1.
x=\frac{-\left(-3\right)±\sqrt{9-20}}{2\left(-1\right)}
Multiply 4 times -5.
x=\frac{-\left(-3\right)±\sqrt{-11}}{2\left(-1\right)}
Add 9 to -20.
x=\frac{-\left(-3\right)±\sqrt{11}i}{2\left(-1\right)}
Take the square root of -11.
x=\frac{3±\sqrt{11}i}{2\left(-1\right)}
The opposite of -3 is 3.
x=\frac{3±\sqrt{11}i}{-2}
Multiply 2 times -1.
x=\frac{3+\sqrt{11}i}{-2}
Now solve the equation x=\frac{3±\sqrt{11}i}{-2} when ± is plus. Add 3 to i\sqrt{11}.
x=\frac{-\sqrt{11}i-3}{2}
Divide 3+i\sqrt{11} by -2.
x=\frac{-\sqrt{11}i+3}{-2}
Now solve the equation x=\frac{3±\sqrt{11}i}{-2} when ± is minus. Subtract i\sqrt{11} from 3.
x=\frac{-3+\sqrt{11}i}{2}
Divide 3-i\sqrt{11} by -2.
x=\frac{-\sqrt{11}i-3}{2} x=\frac{-3+\sqrt{11}i}{2}
The equation is now solved.
-x^{2}-3x-5=0
Combine -2x^{2} and x^{2} to get -x^{2}.
-x^{2}-3x=5
Add 5 to both sides. Anything plus zero gives itself.
\frac{-x^{2}-3x}{-1}=\frac{5}{-1}
Divide both sides by -1.
x^{2}+\left(-\frac{3}{-1}\right)x=\frac{5}{-1}
Dividing by -1 undoes the multiplication by -1.
x^{2}+3x=\frac{5}{-1}
Divide -3 by -1.
x^{2}+3x=-5
Divide 5 by -1.
x^{2}+3x+\left(\frac{3}{2}\right)^{2}=-5+\left(\frac{3}{2}\right)^{2}
Divide 3, the coefficient of the x term, by 2 to get \frac{3}{2}. Then add the square of \frac{3}{2} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}+3x+\frac{9}{4}=-5+\frac{9}{4}
Square \frac{3}{2} by squaring both the numerator and the denominator of the fraction.
x^{2}+3x+\frac{9}{4}=-\frac{11}{4}
Add -5 to \frac{9}{4}.
\left(x+\frac{3}{2}\right)^{2}=-\frac{11}{4}
Factor x^{2}+3x+\frac{9}{4}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+\frac{3}{2}\right)^{2}}=\sqrt{-\frac{11}{4}}
Take the square root of both sides of the equation.
x+\frac{3}{2}=\frac{\sqrt{11}i}{2} x+\frac{3}{2}=-\frac{\sqrt{11}i}{2}
Simplify.
x=\frac{-3+\sqrt{11}i}{2} x=\frac{-\sqrt{11}i-3}{2}
Subtract \frac{3}{2} from both sides of the equation.