Solve for x
x = \frac{\sqrt{57} + 9}{4} \approx 4.137458609
x=\frac{9-\sqrt{57}}{4}\approx 0.362541391
Graph
Share
Copied to clipboard
-2x^{2}+9x-3=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-9±\sqrt{9^{2}-4\left(-2\right)\left(-3\right)}}{2\left(-2\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -2 for a, 9 for b, and -3 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-9±\sqrt{81-4\left(-2\right)\left(-3\right)}}{2\left(-2\right)}
Square 9.
x=\frac{-9±\sqrt{81+8\left(-3\right)}}{2\left(-2\right)}
Multiply -4 times -2.
x=\frac{-9±\sqrt{81-24}}{2\left(-2\right)}
Multiply 8 times -3.
x=\frac{-9±\sqrt{57}}{2\left(-2\right)}
Add 81 to -24.
x=\frac{-9±\sqrt{57}}{-4}
Multiply 2 times -2.
x=\frac{\sqrt{57}-9}{-4}
Now solve the equation x=\frac{-9±\sqrt{57}}{-4} when ± is plus. Add -9 to \sqrt{57}.
x=\frac{9-\sqrt{57}}{4}
Divide -9+\sqrt{57} by -4.
x=\frac{-\sqrt{57}-9}{-4}
Now solve the equation x=\frac{-9±\sqrt{57}}{-4} when ± is minus. Subtract \sqrt{57} from -9.
x=\frac{\sqrt{57}+9}{4}
Divide -9-\sqrt{57} by -4.
x=\frac{9-\sqrt{57}}{4} x=\frac{\sqrt{57}+9}{4}
The equation is now solved.
-2x^{2}+9x-3=0
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
-2x^{2}+9x-3-\left(-3\right)=-\left(-3\right)
Add 3 to both sides of the equation.
-2x^{2}+9x=-\left(-3\right)
Subtracting -3 from itself leaves 0.
-2x^{2}+9x=3
Subtract -3 from 0.
\frac{-2x^{2}+9x}{-2}=\frac{3}{-2}
Divide both sides by -2.
x^{2}+\frac{9}{-2}x=\frac{3}{-2}
Dividing by -2 undoes the multiplication by -2.
x^{2}-\frac{9}{2}x=\frac{3}{-2}
Divide 9 by -2.
x^{2}-\frac{9}{2}x=-\frac{3}{2}
Divide 3 by -2.
x^{2}-\frac{9}{2}x+\left(-\frac{9}{4}\right)^{2}=-\frac{3}{2}+\left(-\frac{9}{4}\right)^{2}
Divide -\frac{9}{2}, the coefficient of the x term, by 2 to get -\frac{9}{4}. Then add the square of -\frac{9}{4} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-\frac{9}{2}x+\frac{81}{16}=-\frac{3}{2}+\frac{81}{16}
Square -\frac{9}{4} by squaring both the numerator and the denominator of the fraction.
x^{2}-\frac{9}{2}x+\frac{81}{16}=\frac{57}{16}
Add -\frac{3}{2} to \frac{81}{16} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(x-\frac{9}{4}\right)^{2}=\frac{57}{16}
Factor x^{2}-\frac{9}{2}x+\frac{81}{16}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{9}{4}\right)^{2}}=\sqrt{\frac{57}{16}}
Take the square root of both sides of the equation.
x-\frac{9}{4}=\frac{\sqrt{57}}{4} x-\frac{9}{4}=-\frac{\sqrt{57}}{4}
Simplify.
x=\frac{\sqrt{57}+9}{4} x=\frac{9-\sqrt{57}}{4}
Add \frac{9}{4} to both sides of the equation.
x ^ 2 -\frac{9}{2}x +\frac{3}{2} = 0
Quadratic equations such as this one can be solved by a new direct factoring method that does not require guess work. To use the direct factoring method, the equation must be in the form x^2+Bx+C=0.
r + s = \frac{9}{2} rs = \frac{3}{2}
Let r and s be the factors for the quadratic equation such that x^2+Bx+C=(x−r)(x−s) where sum of factors (r+s)=−B and the product of factors rs = C
r = \frac{9}{4} - u s = \frac{9}{4} + u
Two numbers r and s sum up to \frac{9}{2} exactly when the average of the two numbers is \frac{1}{2}*\frac{9}{2} = \frac{9}{4}. You can also see that the midpoint of r and s corresponds to the axis of symmetry of the parabola represented by the quadratic equation y=x^2+Bx+C. The values of r and s are equidistant from the center by an unknown quantity u. Express r and s with respect to variable u. <div style='padding: 8px'><img src='https://opalmath.azureedge.net/customsolver/quadraticgraph.png' style='width: 100%;max-width: 700px' /></div>
(\frac{9}{4} - u) (\frac{9}{4} + u) = \frac{3}{2}
To solve for unknown quantity u, substitute these in the product equation rs = \frac{3}{2}
\frac{81}{16} - u^2 = \frac{3}{2}
Simplify by expanding (a -b) (a + b) = a^2 – b^2
-u^2 = \frac{3}{2}-\frac{81}{16} = -\frac{57}{16}
Simplify the expression by subtracting \frac{81}{16} on both sides
u^2 = \frac{57}{16} u = \pm\sqrt{\frac{57}{16}} = \pm \frac{\sqrt{57}}{4}
Simplify the expression by multiplying -1 on both sides and take the square root to obtain the value of unknown variable u
r =\frac{9}{4} - \frac{\sqrt{57}}{4} = 0.363 s = \frac{9}{4} + \frac{\sqrt{57}}{4} = 4.137
The factors r and s are the solutions to the quadratic equation. Substitute the value of u to compute the r and s.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}