Skip to main content
Solve for x (complex solution)
Tick mark Image
Graph

Similar Problems from Web Search

Share

-2x^{2}+7x+1=17
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
-2x^{2}+7x+1-17=17-17
Subtract 17 from both sides of the equation.
-2x^{2}+7x+1-17=0
Subtracting 17 from itself leaves 0.
-2x^{2}+7x-16=0
Subtract 17 from 1.
x=\frac{-7±\sqrt{7^{2}-4\left(-2\right)\left(-16\right)}}{2\left(-2\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -2 for a, 7 for b, and -16 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-7±\sqrt{49-4\left(-2\right)\left(-16\right)}}{2\left(-2\right)}
Square 7.
x=\frac{-7±\sqrt{49+8\left(-16\right)}}{2\left(-2\right)}
Multiply -4 times -2.
x=\frac{-7±\sqrt{49-128}}{2\left(-2\right)}
Multiply 8 times -16.
x=\frac{-7±\sqrt{-79}}{2\left(-2\right)}
Add 49 to -128.
x=\frac{-7±\sqrt{79}i}{2\left(-2\right)}
Take the square root of -79.
x=\frac{-7±\sqrt{79}i}{-4}
Multiply 2 times -2.
x=\frac{-7+\sqrt{79}i}{-4}
Now solve the equation x=\frac{-7±\sqrt{79}i}{-4} when ± is plus. Add -7 to i\sqrt{79}.
x=\frac{-\sqrt{79}i+7}{4}
Divide -7+i\sqrt{79} by -4.
x=\frac{-\sqrt{79}i-7}{-4}
Now solve the equation x=\frac{-7±\sqrt{79}i}{-4} when ± is minus. Subtract i\sqrt{79} from -7.
x=\frac{7+\sqrt{79}i}{4}
Divide -7-i\sqrt{79} by -4.
x=\frac{-\sqrt{79}i+7}{4} x=\frac{7+\sqrt{79}i}{4}
The equation is now solved.
-2x^{2}+7x+1=17
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
-2x^{2}+7x+1-1=17-1
Subtract 1 from both sides of the equation.
-2x^{2}+7x=17-1
Subtracting 1 from itself leaves 0.
-2x^{2}+7x=16
Subtract 1 from 17.
\frac{-2x^{2}+7x}{-2}=\frac{16}{-2}
Divide both sides by -2.
x^{2}+\frac{7}{-2}x=\frac{16}{-2}
Dividing by -2 undoes the multiplication by -2.
x^{2}-\frac{7}{2}x=\frac{16}{-2}
Divide 7 by -2.
x^{2}-\frac{7}{2}x=-8
Divide 16 by -2.
x^{2}-\frac{7}{2}x+\left(-\frac{7}{4}\right)^{2}=-8+\left(-\frac{7}{4}\right)^{2}
Divide -\frac{7}{2}, the coefficient of the x term, by 2 to get -\frac{7}{4}. Then add the square of -\frac{7}{4} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-\frac{7}{2}x+\frac{49}{16}=-8+\frac{49}{16}
Square -\frac{7}{4} by squaring both the numerator and the denominator of the fraction.
x^{2}-\frac{7}{2}x+\frac{49}{16}=-\frac{79}{16}
Add -8 to \frac{49}{16}.
\left(x-\frac{7}{4}\right)^{2}=-\frac{79}{16}
Factor x^{2}-\frac{7}{2}x+\frac{49}{16}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{7}{4}\right)^{2}}=\sqrt{-\frac{79}{16}}
Take the square root of both sides of the equation.
x-\frac{7}{4}=\frac{\sqrt{79}i}{4} x-\frac{7}{4}=-\frac{\sqrt{79}i}{4}
Simplify.
x=\frac{7+\sqrt{79}i}{4} x=\frac{-\sqrt{79}i+7}{4}
Add \frac{7}{4} to both sides of the equation.