Skip to main content
Solve for x (complex solution)
Tick mark Image
Graph

Similar Problems from Web Search

Share

-2x^{2}+60x=1200
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
-2x^{2}+60x-1200=1200-1200
Subtract 1200 from both sides of the equation.
-2x^{2}+60x-1200=0
Subtracting 1200 from itself leaves 0.
x=\frac{-60±\sqrt{60^{2}-4\left(-2\right)\left(-1200\right)}}{2\left(-2\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -2 for a, 60 for b, and -1200 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-60±\sqrt{3600-4\left(-2\right)\left(-1200\right)}}{2\left(-2\right)}
Square 60.
x=\frac{-60±\sqrt{3600+8\left(-1200\right)}}{2\left(-2\right)}
Multiply -4 times -2.
x=\frac{-60±\sqrt{3600-9600}}{2\left(-2\right)}
Multiply 8 times -1200.
x=\frac{-60±\sqrt{-6000}}{2\left(-2\right)}
Add 3600 to -9600.
x=\frac{-60±20\sqrt{15}i}{2\left(-2\right)}
Take the square root of -6000.
x=\frac{-60±20\sqrt{15}i}{-4}
Multiply 2 times -2.
x=\frac{-60+20\sqrt{15}i}{-4}
Now solve the equation x=\frac{-60±20\sqrt{15}i}{-4} when ± is plus. Add -60 to 20i\sqrt{15}.
x=-5\sqrt{15}i+15
Divide -60+20i\sqrt{15} by -4.
x=\frac{-20\sqrt{15}i-60}{-4}
Now solve the equation x=\frac{-60±20\sqrt{15}i}{-4} when ± is minus. Subtract 20i\sqrt{15} from -60.
x=15+5\sqrt{15}i
Divide -60-20i\sqrt{15} by -4.
x=-5\sqrt{15}i+15 x=15+5\sqrt{15}i
The equation is now solved.
-2x^{2}+60x=1200
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
\frac{-2x^{2}+60x}{-2}=\frac{1200}{-2}
Divide both sides by -2.
x^{2}+\frac{60}{-2}x=\frac{1200}{-2}
Dividing by -2 undoes the multiplication by -2.
x^{2}-30x=\frac{1200}{-2}
Divide 60 by -2.
x^{2}-30x=-600
Divide 1200 by -2.
x^{2}-30x+\left(-15\right)^{2}=-600+\left(-15\right)^{2}
Divide -30, the coefficient of the x term, by 2 to get -15. Then add the square of -15 to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-30x+225=-600+225
Square -15.
x^{2}-30x+225=-375
Add -600 to 225.
\left(x-15\right)^{2}=-375
Factor x^{2}-30x+225. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-15\right)^{2}}=\sqrt{-375}
Take the square root of both sides of the equation.
x-15=5\sqrt{15}i x-15=-5\sqrt{15}i
Simplify.
x=15+5\sqrt{15}i x=-5\sqrt{15}i+15
Add 15 to both sides of the equation.