Skip to main content
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

-2x^{2}+6x-x^{2}=-2x-24
Subtract x^{2} from both sides.
-3x^{2}+6x=-2x-24
Combine -2x^{2} and -x^{2} to get -3x^{2}.
-3x^{2}+6x+2x=-24
Add 2x to both sides.
-3x^{2}+8x=-24
Combine 6x and 2x to get 8x.
-3x^{2}+8x+24=0
Add 24 to both sides.
x=\frac{-8±\sqrt{8^{2}-4\left(-3\right)\times 24}}{2\left(-3\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -3 for a, 8 for b, and 24 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-8±\sqrt{64-4\left(-3\right)\times 24}}{2\left(-3\right)}
Square 8.
x=\frac{-8±\sqrt{64+12\times 24}}{2\left(-3\right)}
Multiply -4 times -3.
x=\frac{-8±\sqrt{64+288}}{2\left(-3\right)}
Multiply 12 times 24.
x=\frac{-8±\sqrt{352}}{2\left(-3\right)}
Add 64 to 288.
x=\frac{-8±4\sqrt{22}}{2\left(-3\right)}
Take the square root of 352.
x=\frac{-8±4\sqrt{22}}{-6}
Multiply 2 times -3.
x=\frac{4\sqrt{22}-8}{-6}
Now solve the equation x=\frac{-8±4\sqrt{22}}{-6} when ± is plus. Add -8 to 4\sqrt{22}.
x=\frac{4-2\sqrt{22}}{3}
Divide -8+4\sqrt{22} by -6.
x=\frac{-4\sqrt{22}-8}{-6}
Now solve the equation x=\frac{-8±4\sqrt{22}}{-6} when ± is minus. Subtract 4\sqrt{22} from -8.
x=\frac{2\sqrt{22}+4}{3}
Divide -8-4\sqrt{22} by -6.
x=\frac{4-2\sqrt{22}}{3} x=\frac{2\sqrt{22}+4}{3}
The equation is now solved.
-2x^{2}+6x-x^{2}=-2x-24
Subtract x^{2} from both sides.
-3x^{2}+6x=-2x-24
Combine -2x^{2} and -x^{2} to get -3x^{2}.
-3x^{2}+6x+2x=-24
Add 2x to both sides.
-3x^{2}+8x=-24
Combine 6x and 2x to get 8x.
\frac{-3x^{2}+8x}{-3}=-\frac{24}{-3}
Divide both sides by -3.
x^{2}+\frac{8}{-3}x=-\frac{24}{-3}
Dividing by -3 undoes the multiplication by -3.
x^{2}-\frac{8}{3}x=-\frac{24}{-3}
Divide 8 by -3.
x^{2}-\frac{8}{3}x=8
Divide -24 by -3.
x^{2}-\frac{8}{3}x+\left(-\frac{4}{3}\right)^{2}=8+\left(-\frac{4}{3}\right)^{2}
Divide -\frac{8}{3}, the coefficient of the x term, by 2 to get -\frac{4}{3}. Then add the square of -\frac{4}{3} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-\frac{8}{3}x+\frac{16}{9}=8+\frac{16}{9}
Square -\frac{4}{3} by squaring both the numerator and the denominator of the fraction.
x^{2}-\frac{8}{3}x+\frac{16}{9}=\frac{88}{9}
Add 8 to \frac{16}{9}.
\left(x-\frac{4}{3}\right)^{2}=\frac{88}{9}
Factor x^{2}-\frac{8}{3}x+\frac{16}{9}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{4}{3}\right)^{2}}=\sqrt{\frac{88}{9}}
Take the square root of both sides of the equation.
x-\frac{4}{3}=\frac{2\sqrt{22}}{3} x-\frac{4}{3}=-\frac{2\sqrt{22}}{3}
Simplify.
x=\frac{2\sqrt{22}+4}{3} x=\frac{4-2\sqrt{22}}{3}
Add \frac{4}{3} to both sides of the equation.