Skip to main content
Factor
Tick mark Image
Evaluate
Tick mark Image
Graph

Similar Problems from Web Search

Share

2\left(-x^{2}+1200x\right)
Factor out 2.
x\left(-x+1200\right)
Consider -x^{2}+1200x. Factor out x.
2x\left(-x+1200\right)
Rewrite the complete factored expression.
-2x^{2}+2400x=0
Quadratic polynomial can be factored using the transformation ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), where x_{1} and x_{2} are the solutions of the quadratic equation ax^{2}+bx+c=0.
x=\frac{-2400±\sqrt{2400^{2}}}{2\left(-2\right)}
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-2400±2400}{2\left(-2\right)}
Take the square root of 2400^{2}.
x=\frac{-2400±2400}{-4}
Multiply 2 times -2.
x=\frac{0}{-4}
Now solve the equation x=\frac{-2400±2400}{-4} when ± is plus. Add -2400 to 2400.
x=0
Divide 0 by -4.
x=-\frac{4800}{-4}
Now solve the equation x=\frac{-2400±2400}{-4} when ± is minus. Subtract 2400 from -2400.
x=1200
Divide -4800 by -4.
-2x^{2}+2400x=-2x\left(x-1200\right)
Factor the original expression using ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Substitute 0 for x_{1} and 1200 for x_{2}.