Solve for x
x=-1
x = \frac{9}{2} = 4\frac{1}{2} = 4.5
Graph
Share
Copied to clipboard
-2x^{2}+2x+9+5x=0
Add 5x to both sides.
-2x^{2}+7x+9=0
Combine 2x and 5x to get 7x.
a+b=7 ab=-2\times 9=-18
To solve the equation, factor the left hand side by grouping. First, left hand side needs to be rewritten as -2x^{2}+ax+bx+9. To find a and b, set up a system to be solved.
-1,18 -2,9 -3,6
Since ab is negative, a and b have the opposite signs. Since a+b is positive, the positive number has greater absolute value than the negative. List all such integer pairs that give product -18.
-1+18=17 -2+9=7 -3+6=3
Calculate the sum for each pair.
a=9 b=-2
The solution is the pair that gives sum 7.
\left(-2x^{2}+9x\right)+\left(-2x+9\right)
Rewrite -2x^{2}+7x+9 as \left(-2x^{2}+9x\right)+\left(-2x+9\right).
-x\left(2x-9\right)-\left(2x-9\right)
Factor out -x in the first and -1 in the second group.
\left(2x-9\right)\left(-x-1\right)
Factor out common term 2x-9 by using distributive property.
x=\frac{9}{2} x=-1
To find equation solutions, solve 2x-9=0 and -x-1=0.
-2x^{2}+2x+9+5x=0
Add 5x to both sides.
-2x^{2}+7x+9=0
Combine 2x and 5x to get 7x.
x=\frac{-7±\sqrt{7^{2}-4\left(-2\right)\times 9}}{2\left(-2\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -2 for a, 7 for b, and 9 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-7±\sqrt{49-4\left(-2\right)\times 9}}{2\left(-2\right)}
Square 7.
x=\frac{-7±\sqrt{49+8\times 9}}{2\left(-2\right)}
Multiply -4 times -2.
x=\frac{-7±\sqrt{49+72}}{2\left(-2\right)}
Multiply 8 times 9.
x=\frac{-7±\sqrt{121}}{2\left(-2\right)}
Add 49 to 72.
x=\frac{-7±11}{2\left(-2\right)}
Take the square root of 121.
x=\frac{-7±11}{-4}
Multiply 2 times -2.
x=\frac{4}{-4}
Now solve the equation x=\frac{-7±11}{-4} when ± is plus. Add -7 to 11.
x=-1
Divide 4 by -4.
x=-\frac{18}{-4}
Now solve the equation x=\frac{-7±11}{-4} when ± is minus. Subtract 11 from -7.
x=\frac{9}{2}
Reduce the fraction \frac{-18}{-4} to lowest terms by extracting and canceling out 2.
x=-1 x=\frac{9}{2}
The equation is now solved.
-2x^{2}+2x+9+5x=0
Add 5x to both sides.
-2x^{2}+7x+9=0
Combine 2x and 5x to get 7x.
-2x^{2}+7x=-9
Subtract 9 from both sides. Anything subtracted from zero gives its negation.
\frac{-2x^{2}+7x}{-2}=-\frac{9}{-2}
Divide both sides by -2.
x^{2}+\frac{7}{-2}x=-\frac{9}{-2}
Dividing by -2 undoes the multiplication by -2.
x^{2}-\frac{7}{2}x=-\frac{9}{-2}
Divide 7 by -2.
x^{2}-\frac{7}{2}x=\frac{9}{2}
Divide -9 by -2.
x^{2}-\frac{7}{2}x+\left(-\frac{7}{4}\right)^{2}=\frac{9}{2}+\left(-\frac{7}{4}\right)^{2}
Divide -\frac{7}{2}, the coefficient of the x term, by 2 to get -\frac{7}{4}. Then add the square of -\frac{7}{4} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-\frac{7}{2}x+\frac{49}{16}=\frac{9}{2}+\frac{49}{16}
Square -\frac{7}{4} by squaring both the numerator and the denominator of the fraction.
x^{2}-\frac{7}{2}x+\frac{49}{16}=\frac{121}{16}
Add \frac{9}{2} to \frac{49}{16} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(x-\frac{7}{4}\right)^{2}=\frac{121}{16}
Factor x^{2}-\frac{7}{2}x+\frac{49}{16}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{7}{4}\right)^{2}}=\sqrt{\frac{121}{16}}
Take the square root of both sides of the equation.
x-\frac{7}{4}=\frac{11}{4} x-\frac{7}{4}=-\frac{11}{4}
Simplify.
x=\frac{9}{2} x=-1
Add \frac{7}{4} to both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}