Solve for x (complex solution)
x=\frac{-2\sqrt{2}i+\sqrt{10}}{2}\approx 1.58113883-1.414213562i
x=\frac{\sqrt{10}+2\sqrt{2}i}{2}\approx 1.58113883+1.414213562i
Graph
Share
Copied to clipboard
-2x^{2}+2\sqrt{10}x-9=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-2\sqrt{10}±\sqrt{\left(2\sqrt{10}\right)^{2}-4\left(-2\right)\left(-9\right)}}{2\left(-2\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -2 for a, 2\sqrt{10} for b, and -9 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-2\sqrt{10}±\sqrt{40-4\left(-2\right)\left(-9\right)}}{2\left(-2\right)}
Square 2\sqrt{10}.
x=\frac{-2\sqrt{10}±\sqrt{40+8\left(-9\right)}}{2\left(-2\right)}
Multiply -4 times -2.
x=\frac{-2\sqrt{10}±\sqrt{40-72}}{2\left(-2\right)}
Multiply 8 times -9.
x=\frac{-2\sqrt{10}±\sqrt{-32}}{2\left(-2\right)}
Add 40 to -72.
x=\frac{-2\sqrt{10}±4\sqrt{2}i}{2\left(-2\right)}
Take the square root of -32.
x=\frac{-2\sqrt{10}±4\sqrt{2}i}{-4}
Multiply 2 times -2.
x=\frac{-2\sqrt{10}+4\sqrt{2}i}{-4}
Now solve the equation x=\frac{-2\sqrt{10}±4\sqrt{2}i}{-4} when ± is plus. Add -2\sqrt{10} to 4i\sqrt{2}.
x=-\sqrt{2}i+\frac{\sqrt{10}}{2}
Divide -2\sqrt{10}+4i\sqrt{2} by -4.
x=\frac{-4\sqrt{2}i-2\sqrt{10}}{-4}
Now solve the equation x=\frac{-2\sqrt{10}±4\sqrt{2}i}{-4} when ± is minus. Subtract 4i\sqrt{2} from -2\sqrt{10}.
x=\frac{\sqrt{10}}{2}+\sqrt{2}i
Divide -2\sqrt{10}-4i\sqrt{2} by -4.
x=-\sqrt{2}i+\frac{\sqrt{10}}{2} x=\frac{\sqrt{10}}{2}+\sqrt{2}i
The equation is now solved.
-2x^{2}+2\sqrt{10}x-9=0
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
-2x^{2}+2\sqrt{10}x-9-\left(-9\right)=-\left(-9\right)
Add 9 to both sides of the equation.
-2x^{2}+2\sqrt{10}x=-\left(-9\right)
Subtracting -9 from itself leaves 0.
-2x^{2}+2\sqrt{10}x=9
Subtract -9 from 0.
\frac{-2x^{2}+2\sqrt{10}x}{-2}=\frac{9}{-2}
Divide both sides by -2.
x^{2}+\frac{2\sqrt{10}}{-2}x=\frac{9}{-2}
Dividing by -2 undoes the multiplication by -2.
x^{2}+\left(-\sqrt{10}\right)x=\frac{9}{-2}
Divide 2\sqrt{10} by -2.
x^{2}+\left(-\sqrt{10}\right)x=-\frac{9}{2}
Divide 9 by -2.
x^{2}+\left(-\sqrt{10}\right)x+\left(-\frac{\sqrt{10}}{2}\right)^{2}=-\frac{9}{2}+\left(-\frac{\sqrt{10}}{2}\right)^{2}
Divide -\sqrt{10}, the coefficient of the x term, by 2 to get -\frac{\sqrt{10}}{2}. Then add the square of -\frac{\sqrt{10}}{2} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}+\left(-\sqrt{10}\right)x+\frac{5}{2}=\frac{-9+5}{2}
Square -\frac{\sqrt{10}}{2}.
x^{2}+\left(-\sqrt{10}\right)x+\frac{5}{2}=-2
Add -\frac{9}{2} to \frac{5}{2} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(x-\frac{\sqrt{10}}{2}\right)^{2}=-2
Factor x^{2}+\left(-\sqrt{10}\right)x+\frac{5}{2}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{\sqrt{10}}{2}\right)^{2}}=\sqrt{-2}
Take the square root of both sides of the equation.
x-\frac{\sqrt{10}}{2}=\sqrt{2}i x-\frac{\sqrt{10}}{2}=-\sqrt{2}i
Simplify.
x=\frac{\sqrt{10}}{2}+\sqrt{2}i x=-\sqrt{2}i+\frac{\sqrt{10}}{2}
Add \frac{\sqrt{10}}{2} to both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}