Solve for x
x=3\sqrt{209}+34\approx 77.370496884
x=34-3\sqrt{209}\approx -9.370496884
Graph
Share
Copied to clipboard
-2x^{2}+136x+1800=350
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
-2x^{2}+136x+1800-350=350-350
Subtract 350 from both sides of the equation.
-2x^{2}+136x+1800-350=0
Subtracting 350 from itself leaves 0.
-2x^{2}+136x+1450=0
Subtract 350 from 1800.
x=\frac{-136±\sqrt{136^{2}-4\left(-2\right)\times 1450}}{2\left(-2\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -2 for a, 136 for b, and 1450 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-136±\sqrt{18496-4\left(-2\right)\times 1450}}{2\left(-2\right)}
Square 136.
x=\frac{-136±\sqrt{18496+8\times 1450}}{2\left(-2\right)}
Multiply -4 times -2.
x=\frac{-136±\sqrt{18496+11600}}{2\left(-2\right)}
Multiply 8 times 1450.
x=\frac{-136±\sqrt{30096}}{2\left(-2\right)}
Add 18496 to 11600.
x=\frac{-136±12\sqrt{209}}{2\left(-2\right)}
Take the square root of 30096.
x=\frac{-136±12\sqrt{209}}{-4}
Multiply 2 times -2.
x=\frac{12\sqrt{209}-136}{-4}
Now solve the equation x=\frac{-136±12\sqrt{209}}{-4} when ± is plus. Add -136 to 12\sqrt{209}.
x=34-3\sqrt{209}
Divide -136+12\sqrt{209} by -4.
x=\frac{-12\sqrt{209}-136}{-4}
Now solve the equation x=\frac{-136±12\sqrt{209}}{-4} when ± is minus. Subtract 12\sqrt{209} from -136.
x=3\sqrt{209}+34
Divide -136-12\sqrt{209} by -4.
x=34-3\sqrt{209} x=3\sqrt{209}+34
The equation is now solved.
-2x^{2}+136x+1800=350
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
-2x^{2}+136x+1800-1800=350-1800
Subtract 1800 from both sides of the equation.
-2x^{2}+136x=350-1800
Subtracting 1800 from itself leaves 0.
-2x^{2}+136x=-1450
Subtract 1800 from 350.
\frac{-2x^{2}+136x}{-2}=-\frac{1450}{-2}
Divide both sides by -2.
x^{2}+\frac{136}{-2}x=-\frac{1450}{-2}
Dividing by -2 undoes the multiplication by -2.
x^{2}-68x=-\frac{1450}{-2}
Divide 136 by -2.
x^{2}-68x=725
Divide -1450 by -2.
x^{2}-68x+\left(-34\right)^{2}=725+\left(-34\right)^{2}
Divide -68, the coefficient of the x term, by 2 to get -34. Then add the square of -34 to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-68x+1156=725+1156
Square -34.
x^{2}-68x+1156=1881
Add 725 to 1156.
\left(x-34\right)^{2}=1881
Factor x^{2}-68x+1156. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-34\right)^{2}}=\sqrt{1881}
Take the square root of both sides of the equation.
x-34=3\sqrt{209} x-34=-3\sqrt{209}
Simplify.
x=3\sqrt{209}+34 x=34-3\sqrt{209}
Add 34 to both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}