Evaluate
13x^{7}-9x+4
Factor
\left(x+1\right)\left(13x^{6}-13x^{5}+13x^{4}-13x^{3}+13x^{2}-13x+4\right)
Graph
Share
Copied to clipboard
-9x+4x^{7}+9x^{7}+4
Combine -2x and -7x to get -9x.
-9x+13x^{7}+4
Combine 4x^{7} and 9x^{7} to get 13x^{7}.
13x^{7}-9x+4
Multiply and combine like terms.
\left(x+1\right)\left(13x^{6}-13x^{5}+13x^{4}-13x^{3}+13x^{2}-13x+4\right)
By Rational Root Theorem, all rational roots of a polynomial are in the form \frac{p}{q}, where p divides the constant term 4 and q divides the leading coefficient 13. One such root is -1. Factor the polynomial by dividing it by x+1. Polynomial 13x^{6}-13x^{5}+13x^{4}-13x^{3}+13x^{2}-13x+4 is not factored since it does not have any rational roots.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}