Solve for x
x=-3
x=2
Graph
Share
Copied to clipboard
-2x+2-\frac{2}{3}x^{2}=-\frac{4}{3}x-2
Subtract \frac{2}{3}x^{2} from both sides.
-2x+2-\frac{2}{3}x^{2}+\frac{4}{3}x=-2
Add \frac{4}{3}x to both sides.
-\frac{2}{3}x+2-\frac{2}{3}x^{2}=-2
Combine -2x and \frac{4}{3}x to get -\frac{2}{3}x.
-\frac{2}{3}x+2-\frac{2}{3}x^{2}+2=0
Add 2 to both sides.
-\frac{2}{3}x+4-\frac{2}{3}x^{2}=0
Add 2 and 2 to get 4.
-\frac{2}{3}x^{2}-\frac{2}{3}x+4=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-\left(-\frac{2}{3}\right)±\sqrt{\left(-\frac{2}{3}\right)^{2}-4\left(-\frac{2}{3}\right)\times 4}}{2\left(-\frac{2}{3}\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -\frac{2}{3} for a, -\frac{2}{3} for b, and 4 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-\frac{2}{3}\right)±\sqrt{\frac{4}{9}-4\left(-\frac{2}{3}\right)\times 4}}{2\left(-\frac{2}{3}\right)}
Square -\frac{2}{3} by squaring both the numerator and the denominator of the fraction.
x=\frac{-\left(-\frac{2}{3}\right)±\sqrt{\frac{4}{9}+\frac{8}{3}\times 4}}{2\left(-\frac{2}{3}\right)}
Multiply -4 times -\frac{2}{3}.
x=\frac{-\left(-\frac{2}{3}\right)±\sqrt{\frac{4}{9}+\frac{32}{3}}}{2\left(-\frac{2}{3}\right)}
Multiply \frac{8}{3} times 4.
x=\frac{-\left(-\frac{2}{3}\right)±\sqrt{\frac{100}{9}}}{2\left(-\frac{2}{3}\right)}
Add \frac{4}{9} to \frac{32}{3} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
x=\frac{-\left(-\frac{2}{3}\right)±\frac{10}{3}}{2\left(-\frac{2}{3}\right)}
Take the square root of \frac{100}{9}.
x=\frac{\frac{2}{3}±\frac{10}{3}}{2\left(-\frac{2}{3}\right)}
The opposite of -\frac{2}{3} is \frac{2}{3}.
x=\frac{\frac{2}{3}±\frac{10}{3}}{-\frac{4}{3}}
Multiply 2 times -\frac{2}{3}.
x=\frac{4}{-\frac{4}{3}}
Now solve the equation x=\frac{\frac{2}{3}±\frac{10}{3}}{-\frac{4}{3}} when ± is plus. Add \frac{2}{3} to \frac{10}{3} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
x=-3
Divide 4 by -\frac{4}{3} by multiplying 4 by the reciprocal of -\frac{4}{3}.
x=-\frac{\frac{8}{3}}{-\frac{4}{3}}
Now solve the equation x=\frac{\frac{2}{3}±\frac{10}{3}}{-\frac{4}{3}} when ± is minus. Subtract \frac{10}{3} from \frac{2}{3} by finding a common denominator and subtracting the numerators. Then reduce the fraction to lowest terms if possible.
x=2
Divide -\frac{8}{3} by -\frac{4}{3} by multiplying -\frac{8}{3} by the reciprocal of -\frac{4}{3}.
x=-3 x=2
The equation is now solved.
-2x+2-\frac{2}{3}x^{2}=-\frac{4}{3}x-2
Subtract \frac{2}{3}x^{2} from both sides.
-2x+2-\frac{2}{3}x^{2}+\frac{4}{3}x=-2
Add \frac{4}{3}x to both sides.
-\frac{2}{3}x+2-\frac{2}{3}x^{2}=-2
Combine -2x and \frac{4}{3}x to get -\frac{2}{3}x.
-\frac{2}{3}x-\frac{2}{3}x^{2}=-2-2
Subtract 2 from both sides.
-\frac{2}{3}x-\frac{2}{3}x^{2}=-4
Subtract 2 from -2 to get -4.
-\frac{2}{3}x^{2}-\frac{2}{3}x=-4
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
\frac{-\frac{2}{3}x^{2}-\frac{2}{3}x}{-\frac{2}{3}}=-\frac{4}{-\frac{2}{3}}
Divide both sides of the equation by -\frac{2}{3}, which is the same as multiplying both sides by the reciprocal of the fraction.
x^{2}+\left(-\frac{\frac{2}{3}}{-\frac{2}{3}}\right)x=-\frac{4}{-\frac{2}{3}}
Dividing by -\frac{2}{3} undoes the multiplication by -\frac{2}{3}.
x^{2}+x=-\frac{4}{-\frac{2}{3}}
Divide -\frac{2}{3} by -\frac{2}{3} by multiplying -\frac{2}{3} by the reciprocal of -\frac{2}{3}.
x^{2}+x=6
Divide -4 by -\frac{2}{3} by multiplying -4 by the reciprocal of -\frac{2}{3}.
x^{2}+x+\left(\frac{1}{2}\right)^{2}=6+\left(\frac{1}{2}\right)^{2}
Divide 1, the coefficient of the x term, by 2 to get \frac{1}{2}. Then add the square of \frac{1}{2} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}+x+\frac{1}{4}=6+\frac{1}{4}
Square \frac{1}{2} by squaring both the numerator and the denominator of the fraction.
x^{2}+x+\frac{1}{4}=\frac{25}{4}
Add 6 to \frac{1}{4}.
\left(x+\frac{1}{2}\right)^{2}=\frac{25}{4}
Factor x^{2}+x+\frac{1}{4}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+\frac{1}{2}\right)^{2}}=\sqrt{\frac{25}{4}}
Take the square root of both sides of the equation.
x+\frac{1}{2}=\frac{5}{2} x+\frac{1}{2}=-\frac{5}{2}
Simplify.
x=2 x=-3
Subtract \frac{1}{2} from both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}